Gene
pfkmb
- ID
- ZDB-GENE-081114-1
- Name
- phosphofructokinase, muscle b
- Symbol
- pfkmb Nomenclature History
- Previous Names
-
- im:7137110
- wu:fc58g11 (1)
- Type
- protein_coding_gene
- Location
- Chr: 6 Mapping Details/Browsers
- Description
- Predicted to enable 6-phosphofructokinase activity and fructose-6-phosphate binding activity. Predicted to be involved in canonical glycolysis; fructose 1,6-bisphosphate metabolic process; and fructose 6-phosphate metabolic process. Predicted to act upstream of or within glycolytic process and phosphorylation. Predicted to be located in cytoplasm. Predicted to be part of 6-phosphofructokinase complex. Predicted to be active in membrane. Human ortholog(s) of this gene implicated in glycogen storage disease VII. Orthologous to human PFKM (phosphofructokinase, muscle).
- Genome Resources
- Note
- None
- Comparative Information
-
- All Expression Data
- 3 figures from 3 publications
- Cross-Species Comparison
- High Throughput Data
- Thisse Expression Data
-
- IMAGE:7137110 (1 image)
Wild Type Expression Summary
- All Phenotype Data
- No data available
- Cross-Species Comparison
- Alliance
Phenotype Summary
Mutations
Allele | Type | Localization | Consequence | Mutagen | Supplier |
---|---|---|---|---|---|
sa31530 | Allele with one point mutation | Unknown | Splice Site | ENU |
1 - 1 of 1
Show
No data available
Human Disease
Disease Ontology Term | Multi-Species Data | OMIM Term | OMIM Phenotype ID |
---|---|---|---|
glycogen storage disease VII | Alliance | Glycogen storage disease VII | 232800 |
1 - 1 of 1
Domain, Family, and Site Summary
Type | InterPro ID | Name |
---|---|---|
Conserved_site | IPR015912 | Phosphofructokinase, conserved site |
Domain | IPR000023 | Phosphofructokinase domain |
Family | IPR009161 | ATP-dependent 6-phosphofructokinase, eukaryotic-type |
Family | IPR022953 | ATP-dependent 6-phosphofructokinase |
Family | IPR041914 | ATP-dependent 6-phosphofructokinase, vertebrate-type |
1 - 5 of 6 Show all
Domain Details Per Protein
Protein | Additional Resources | Length | ATP-dependent 6-phosphofructokinase | ATP-dependent 6-phosphofructokinase, eukaryotic-type | ATP-dependent 6-phosphofructokinase, vertebrate-type | Phosphofructokinase, conserved site | Phosphofructokinase domain | Phosphofructokinase superfamily |
---|---|---|---|---|---|---|---|---|
UniProtKB:A4QNV1 | InterPro | 776 | ||||||
UniProtKB:A0A8M3B3J9 | InterPro | 899 | ||||||
UniProtKB:A0AB13A7I7 | InterPro | 899 | ||||||
UniProtKB:A0A8M1NCU6 | InterPro | 776 |
1 - 4 of 4
Interactions and Pathways
No data available
Plasmids
No data available
No data available
Relationship | Marker Type | Marker | Accession Numbers | Citations |
---|---|---|---|---|
Contained in | BAC | CH211-233B16 | ZFIN Curated Data | |
Encodes | EST | fc58g11 | ||
Encodes | EST | IMAGE:7137110 | Thisse et al., 2004 | |
Encodes | cDNA | MGC:162168 | ZFIN Curated Data |
1 - 4 of 4
Show
Type | Accession # | Sequence | Length (nt/aa) | Analysis |
---|---|---|---|---|
RNA | RefSeq:NM_001365336 (1) | 3242 nt | ||
Genomic | GenBank:BX548005 (1) | 218236 nt | ||
Polypeptide | UniProtKB:A0A8M3B3J9 (1) | 899 aa |
- Tabler, C.T., Lodd, E., Bennewitz, K., Middel, C.S., Erben, V., Ott, H., Poth, T., Fleming, T., Morgenstern, J., Hausser, I., Sticht, C., Poschet, G., Szendroedi, J., Nawroth, P.P., Kroll, J. (2022) Loss of glyoxalase 2 alters the glucose metabolism in zebrafish. Redox Biology. 59:102576102576
- Xu, Y., Tian, J., Kang, Q., Yuan, H., Liu, C., Li, Z., Liu, J., Li, M. (2022) Knockout of Nur77 Leads to Amino Acid, Lipid, and Glucose Metabolism Disorders in Zebrafish. Frontiers in endocrinology. 13:864631
- Niksirat, H., Siino, V., Steinbach, C., Levander, F. (2021) High-Resolution Proteomic Profiling Shows Sexual Dimorphism in Zebrafish Heart-Associated Proteins. Journal of Proteome Research. 20(8):4075-4088
- Han, S.L., Liu, Y., Limbu, S.M., Chen, L.Q., Zhang, M.L., Du, Z.Y. (2020) The reduction of lipid-sourced energy production caused by ATGL inhibition cannot be compensated by activation of HSL, autophagy, and utilization of other nutrients in fish. Fish physiology and biochemistry. 47(1):173-188
- Pereiro, P., Librán-Pérez, M., Figueras, A., Novoa, B. (2020) Conserved function of zebrafish (Danio rerio) Gdf15 as a sepsis tolerance mediator. Developmental and comparative immunology. 109:103698
- Wang, Z., Ding, Z.C., Xu, Q.H., Liu, J.X. (2019) Metabolism responses to silver nanoparticles stresses during zebrafish embryogenesis. Elsevier Science. 222:991-1002
- Bayés, À., Collins, M.O., Reig-Viader, R., Gou, G., Goulding, D., Izquierdo, A., Choudhary, J.S., Emes, R.D., Grant, S.G. (2017) Evolution of complexity in the zebrafish synapse proteome. Nature communications. 8:14613
- Yang, B., Zhai, G., Gong, Y., Su, J., Han, D., Yin, Z., and Xie, S. (2017) Depletion of insulin receptors leads to β-cell hyperplasia in zebrafish. Science Bulletin. 62(7):486-492
- Bouwmeester, M.C., Ruiter, S., Lommelaars, T., Sippel, J., Hodemaekers, H.M., van den Brandhof, E.J., Pennings, J.L., Kamstra, J.H., Jelinek, J., Issa, J.J., Legler, J., van der Ven, L.T. (2016) Zebrafish embryos as a screen for DNA methylation modifications after compound exposure. Toxicology and applied pharmacology. 291:84-96
- Braasch, I., Gehrke, A.R., Smith, J.J., Kawasaki, K., Manousaki, T., Pasquier, J., Amores, A., Desvignes, T., Batzel, P., Catchen, J., Berlin, A.M., Campbell, M.S., Barrell, D., Martin, K.J., Mulley, J.F., Ravi, V., Lee, A.P., Nakamura, T., Chalopin, D., Fan, S., Wcisel, D., Cañestro, C., Sydes, J., Beaudry, F.E., Sun, Y., Hertel, J., Beam, M.J., Fasold, M., Ishiyama, M., Johnson, J., Kehr, S., Lara, M., Letaw, J.H., Litman, G.W., Litman, R.T., Mikami, M., Ota, T., Saha, N.R., Williams, L., Stadler, P.F., Wang, H., Taylor, J.S., Fontenot, Q., Ferrara, A., Searle, S.M., Aken, B., Yandell, M., Schneider, I., Yoder, J.A., Volff, J.N., Meyer, A., Amemiya, C.T., Venkatesh, B., Holland, P.W., Guiguen, Y., Bobe, J., Shubin, N.H., Di Palma, F., Alföldi, J., Lindblad-Toh, K., Postlethwait, J.H. (2016) The spotted gar genome illuminates vertebrate evolution and facilitates human-teleost comparisons. Nature Genetics. 48(4):427-37
1 - 10 of 13
Show