Gene
acsl1a
- ID
- ZDB-GENE-050809-115
- Name
- acyl-CoA synthetase long chain family member 1a
- Symbol
- acsl1a Nomenclature History
- Previous Names
-
- acsl1
- zgc:110081
- Type
- protein_coding_gene
- Location
- Chr: 1 Mapping Details/Browsers
- Description
- Predicted to enable arachidonate-CoA ligase activity. Predicted to be involved in long-chain fatty acid metabolic process; long-chain fatty-acyl-CoA biosynthetic process; and very long-chain fatty acid metabolic process. Predicted to act upstream of or within fatty acid metabolic process. Predicted to be active in endoplasmic reticulum and membrane. Is expressed in several structures, including digestive system; eye; gill; heart; and pleuroperitoneal region. Orthologous to human ACSL1 (acyl-CoA synthetase long chain family member 1).
- Genome Resources
- Note
- None
- Comparative Information
-
- All Expression Data
- 3 figures from 3 publications
- Cross-Species Comparison
- High Throughput Data
- Thisse Expression Data
-
- eu853 (1 image)
Wild Type Expression Summary
- All Phenotype Data
- No data available
- Cross-Species Comparison
- Alliance
Phenotype Summary
Mutations
Allele | Type | Localization | Consequence | Mutagen | Supplier |
---|---|---|---|---|---|
la011400Tg | Transgenic insertion | Unknown | Unknown | DNA | |
la013579Tg | Transgenic insertion | Unknown | Unknown | DNA | |
la021010Tg | Transgenic insertion | Unknown | Unknown | DNA | |
sa11697 | Allele with one point mutation | Unknown | Splice Site | ENU | |
sa13904 | Allele with one point mutation | Unknown | Premature Stop | ENU | |
sa19462 | Allele with one point mutation | Unknown | Premature Stop | ENU | |
zko332a | Allele with one deletion | Unknown | Unknown | CRISPR |
1 - 7 of 7
Show
Targeting Reagent | Created Alleles | Citations |
---|---|---|
CRISPR1-acsl1a | China Zebrafish Resource Center (CZRC) |
1 - 1 of 1
Show
Human Disease
Domain, Family, and Site Summary
Domain Details Per Protein
Protein | Length | AMP-binding, conserved site | AMP-dependent synthetase/ligase domain | ANL, N-terminal domain | Long-chain fatty acid CoA synthetase, eukaryotic |
---|---|---|---|---|---|
UniProtKB:A0A8M2BFN1
|
697 | ||||
UniProtKB:Q499A9
|
697 | ||||
UniProtKB:B8JK22
|
697 |
1 - 3 of 3
Type | Name | Annotation Method | Has Havana Data | Length (nt) | Analysis |
---|---|---|---|---|---|
mRNA |
acsl1a-201
(1)
|
Ensembl | 4,370 nt | ||
mRNA |
acsl1a-202
(1)
|
Ensembl | 2,925 nt | ||
mRNA |
acsl1a-204
(1)
|
Ensembl | 708 nt | ||
ncRNA |
acsl1a-002
(1)
|
Ensembl | 559 nt |
1 - 4 of 4
Interactions and Pathways
No data available
Plasmids
No data available
No data available
Relationship | Marker Type | Marker | Accession Numbers | Citations |
---|---|---|---|---|
Contained in | BAC | CH211-197N1 | ZFIN Curated Data | |
Contained in | BAC | DKEY-228C11 | ZFIN Curated Data | |
Encodes | EST | eu853 | Thisse et al., 2005 | |
Encodes | EST | fc74a12 | ZFIN Curated Data | |
Encodes | cDNA | MGC:110081 | ZFIN Curated Data | |
Encodes | cDNA | MGC:174617 | ZFIN Curated Data |
1 - 6 of 6
Show
Type | Accession # | Sequence | Length (nt/aa) | Analysis |
---|---|---|---|---|
RNA | RefSeq:NM_001031837 (1) | 3248 nt | ||
Genomic | GenBank:BX537280 (1) | 163151 nt | ||
Polypeptide | UniProtKB:A0A8M2BFN1 (1) | 697 aa |
- Gao, P., Jia, D., Li, P., Huang, Y., Hu, H., Sun, K., Lv, Y., Chen, X., Han, Y., Zhang, Z., Ren, X., Wang, Q., Liu, F., Tang, Z., Liu, M. (2022) Accumulation of Lipid Droplets in a Novel Bietti Crystalline Dystrophy Zebrafish Model With Impaired PPARα Pathway. Investigative ophthalmology & visual science. 63:32
- Gasanov, E.V., Jędrychowska, J., Kuźnicki, J., Korzh, V. (2021) Evolutionary context can clarify gene names: Teleosts as a case study. BioEssays : news and reviews in molecular, cellular and developmental biology. 43(6):e2000258
- Park, K.H., Gooz, M., Ye, Z.W., Zhang, J., Beeson, G.C., Rockey, D.C., Kim, S.H. (2021) Flavin Adenine Dinucleotide Depletion Caused by electron transfer flavoprotein subunit alpha Haploinsufficiency Leads to Hepatic Steatosis and Injury in Zebrafish. Hepatology communications. 5:976-991
- Takashima, S., Takemoto, S., Toyoshi, K., Ohba, A., Shimozawa, N. (2021) Zebrafish model of human Zellweger syndrome reveals organ-specific accumulation of distinct fatty acid species and widespread gene expression changes. Molecular genetics and metabolism. 133(3):307-323
- Han, S.L., Liu, Y., Limbu, S.M., Chen, L.Q., Zhang, M.L., Du, Z.Y. (2020) The reduction of lipid-sourced energy production caused by ATGL inhibition cannot be compensated by activation of HSL, autophagy, and utilization of other nutrients in fish. Fish physiology and biochemistry. 47(1):173-188
- Nath, A.K., Ma, J., Chen, Z.Z., Li, Z., Vitery, M.D.C., Kelley, M.L., Peterson, R.T., Gerszten, R.E., Yeh, J.J. (2020) Genetic deletion of gpr27 alters acylcarnitine metabolism, insulin sensitivity, and glucose homeostasis in zebrafish. FASEB journal : official publication of the Federation of American Societies for Experimental Biology. 34:1546-1557
- Pan, Y.X., Zhuo, M.Q., Li, D.D., Xu, Y.H., Wu, K., Luo, Z. (2018) SREBP-1 and LXRα pathways mediated Cu-induced hepatic lipid metabolism in zebrafish Danio rerio. Chemosphere. 215:370-379
- Bayés, À., Collins, M.O., Reig-Viader, R., Gou, G., Goulding, D., Izquierdo, A., Choudhary, J.S., Emes, R.D., Grant, S.G. (2017) Evolution of complexity in the zebrafish synapse proteome. Nature communications. 8:14613
- Navarro-Martín, L., Oliveira, E., Casado, M., Barata, C., Piña, B. (2017) Dysregulatory effects of retinoic acid isomers in late zebrafish embryos. Environmental science and pollution research international. 25(4):3849-3859
- Braasch, I., Gehrke, A.R., Smith, J.J., Kawasaki, K., Manousaki, T., Pasquier, J., Amores, A., Desvignes, T., Batzel, P., Catchen, J., Berlin, A.M., Campbell, M.S., Barrell, D., Martin, K.J., Mulley, J.F., Ravi, V., Lee, A.P., Nakamura, T., Chalopin, D., Fan, S., Wcisel, D., Cañestro, C., Sydes, J., Beaudry, F.E., Sun, Y., Hertel, J., Beam, M.J., Fasold, M., Ishiyama, M., Johnson, J., Kehr, S., Lara, M., Letaw, J.H., Litman, G.W., Litman, R.T., Mikami, M., Ota, T., Saha, N.R., Williams, L., Stadler, P.F., Wang, H., Taylor, J.S., Fontenot, Q., Ferrara, A., Searle, S.M., Aken, B., Yandell, M., Schneider, I., Yoder, J.A., Volff, J.N., Meyer, A., Amemiya, C.T., Venkatesh, B., Holland, P.W., Guiguen, Y., Bobe, J., Shubin, N.H., Di Palma, F., Alföldi, J., Lindblad-Toh, K., Postlethwait, J.H. (2016) The spotted gar genome illuminates vertebrate evolution and facilitates human-teleost comparisons. Nature Genetics. 48(4):427-37
1 - 10 of 19
Show