Gene
pfkma
- ID
- ZDB-GENE-040912-135
- Name
- phosphofructokinase, muscle a
- Symbol
- pfkma Nomenclature History
- Previous Names
-
- pfkm (1)
- wu:fc58g11
- zgc:92344
- Type
- protein_coding_gene
- Location
- Chr: 23 Mapping Details/Browsers
- Description
- Predicted to enable 6-phosphofructokinase activity and fructose-6-phosphate binding activity. Predicted to be involved in canonical glycolysis; fructose 1,6-bisphosphate metabolic process; and fructose 6-phosphate metabolic process. Predicted to act upstream of or within glycolytic process and phosphorylation. Predicted to be located in cytoplasm. Predicted to be part of 6-phosphofructokinase complex. Predicted to be active in membrane. Is expressed in male organism; musculature system; myotome; and pectoral fin musculature. Human ortholog(s) of this gene implicated in glycogen storage disease VII. Orthologous to human PFKM (phosphofructokinase, muscle).
- Genome Resources
- Note
- None
- Comparative Information
-
- All Expression Data
- 15 figures from 5 publications
- Cross-Species Comparison
- High Throughput Data
- Thisse Expression Data
-
- IMAGE:7151834 (6 images)
- IMAGE:7147892 (8 images)
Wild Type Expression Summary
- All Phenotype Data
- No data available
- Cross-Species Comparison
- Alliance
Phenotype Summary
Mutations
No data available
No data available
Human Disease
Disease Ontology Term | Multi-Species Data | OMIM Term | OMIM Phenotype ID |
---|---|---|---|
glycogen storage disease VII | Alliance | Glycogen storage disease VII | 232800 |
1 - 1 of 1
Domain, Family, and Site Summary
Type | InterPro ID | Name |
---|---|---|
Conserved_site | IPR015912 | Phosphofructokinase, conserved site |
Domain | IPR000023 | Phosphofructokinase domain |
Family | IPR009161 | ATP-dependent 6-phosphofructokinase, eukaryotic-type |
Family | IPR022953 | ATP-dependent 6-phosphofructokinase |
Family | IPR041914 | ATP-dependent 6-phosphofructokinase, vertebrate-type |
1 - 5 of 6 Show all
Domain Details Per Protein
Protein | Length | ATP-dependent 6-phosphofructokinase | ATP-dependent 6-phosphofructokinase, eukaryotic-type | ATP-dependent 6-phosphofructokinase, vertebrate-type | Phosphofructokinase, conserved site | Phosphofructokinase domain | Phosphofructokinase superfamily |
---|---|---|---|---|---|---|---|
UniProtKB:Q66HV8
|
784 |
1 - 1 of 1
Interactions and Pathways
No data available
Plasmids
No data available
No data available
Relationship | Marker Type | Marker | Accession Numbers | Citations |
---|---|---|---|---|
Contained in | BAC | CH211-156J22 | ZFIN Curated Data | |
Encodes | EST | IMAGE:7147892 | Thisse et al., 2004 | |
Encodes | EST | IMAGE:7151834 | Thisse et al., 2004 | |
Encodes | cDNA | MGC:92344 | ZFIN Curated Data |
1 - 4 of 4
Show
Type | Accession # | Sequence | Length (nt/aa) | Analysis |
---|---|---|---|---|
RNA | RefSeq:NM_001004575 (1) | 2645 nt | ||
Genomic | GenBank:CR354381 (1) | 104229 nt | ||
Polypeptide | UniProtKB:Q66HV8 (1) | 784 aa |
- Hu, W., Liu, L., Forn-Cuní, G., Ding, Y., Alia, A., Spaink, H.P. (2023) Transcriptomic and Metabolomic Studies Reveal That Toll-like Receptor 2 Has a Role in Glucose-Related Metabolism in Unchallenged Zebrafish Larvae (Danio rerio). Biology. 12(2):
- Tabler, C.T., Lodd, E., Bennewitz, K., Middel, C.S., Erben, V., Ott, H., Poth, T., Fleming, T., Morgenstern, J., Hausser, I., Sticht, C., Poschet, G., Szendroedi, J., Nawroth, P.P., Kroll, J. (2022) Loss of glyoxalase 2 alters the glucose metabolism in zebrafish. Redox Biology. 59:102576102576
- Wang, J.G., Zhao, S.H., Qian, Y.C., Qian, Y.F., Liu, Y.C., Qiao, F., Luo, Y., Zhang, M.L., Du, Z.Y. (2022) The dysfunction of hormone-sensitive lipase induces lipid deposition and reprogramming of nutrient metabolism. The British journal of nutrition. 130(4):588-603
- Pohl, J., Golovko, O., Carlsson, G., Örn, S., Schmitz, M., Ahi, E.P. (2021) Gene co-expression network analysis reveals mechanisms underlying ozone-induced carbamazepine toxicity in zebrafish (Danio rerio) embryos. Chemosphere. 276:130282
- Li, L.Y., Li, J.M., Ning, L.J., Lu, D.L., Luo, Y., Ma, Q., Limbu, S.M., Li, D.L., Chen, L.Q., Lodhi, I.J., Degrace, P., Zhang, M.L., Du, Z.Y. (2020) Mitochondrial Fatty Acid β-Oxidation Inhibition Promotes Glucose Utilization and Protein Deposition through Energy Homeostasis Remodeling in Fish. The Journal of nutrition. 150(9):2322-2335
- Li, L.Y., Lv, H.B., Jiang, Z.Y., Qiao, F., Chen, L.Q., Zhang, M.L., Du, Z.Y. (2020) Peroxisomal proliferator-activated receptor α-b deficiency induces the reprogramming of nutrient metabolism in zebrafish. The Journal of physiology. 598(20):4537-4553
- Li, Z., Liang, X., Liu, W., Zhao, Y., Yang, H., Li, W., Adamovsky, O., Martyniuk, C.J. (2020) Elucidating mechanisms of immunotoxicity by benzotriazole ultraviolet stabilizers in zebrafish (Danio rerio): Implication of the AHR-IL17/IL22 immune pathway. Environmental pollution (Barking, Essex : 1987). 262:114291
- Martínez, R., Tu, W., Eng, T., Allaire-Leung, M., Piña, B., Navarro-Martín, L., Mennigen, J.A. (2020) Acute and long-term metabolic consequences of early developmental Bisphenol A exposure in zebrafish (Danio rerio). Chemosphere. 256:127080
- Pereiro, P., Librán-Pérez, M., Figueras, A., Novoa, B. (2020) Conserved function of zebrafish (Danio rerio) Gdf15 as a sepsis tolerance mediator. Developmental and comparative immunology. 109:103698
- Ma, Q., Hu, C.T., Yue, J., Luo, Y., Qiao, F., Chen, L.Q., Zhang, M.L., Du, Z.Y. (2019) High-carbohydrate diet promotes the adaptation to acute hypoxia in zebrafish. Fish physiology and biochemistry. 46(2):665-679
1 - 10 of 24
Show