Hmdb loader
Show more...Show more...Show more...Show more...Show more...
Record Information
Version5.0
StatusDetected but not Quantified
Creation Date2005-11-16 15:48:42 UTC
Update Date2021-09-14 15:48:16 UTC
HMDB IDHMDB0001202
Secondary Accession Numbers
  • HMDB01202
Metabolite Identification
Common NamedCMP
DescriptionDeoxycytidine monophosphate (dCMP), also known as deoxycytidylic acid or deoxycytidylate in its conjugate acid and conjugate base forms, respectively, is a deoxynucleotide, and one of the four monomers that make up DNA. In a DNA double helix, it will base pair with deoxyguanosine monophosphate. dCMP belongs to the class of organic compounds known as pyrimidine 2'-deoxyribonucleoside monophosphates. These are pyrimidine nucleotides with a monophosphate group linked to the ribose moiety lacking a hydroxyl group at position 2. Deficiency of the enzyme deoxycytidine kinase (EC2.7.1.74) is associated with resistance to antiviral and anticancer chemotherapeutic agents, whereas increased enzyme activity is associated with increased activation of these compounds to cytotoxic nucleoside triphosphate derivatives. dCMP exists in all living species, ranging from bacteria to humans. Within humans, dCMP participates in a number of enzymatic reactions. In particular, dCMP can be converted to dCDP by the enzyme UMP-CMP kinase 2. In addition, dCMP can be converted into deoxycytidine, which is catalyzed by the enzyme cytosolic purine 5'-nucleotidase. In humans, dCMP is involved in the metabolic disorder called ump synthase deficiency (orotic aciduria). Outside of the human body, dCMP has been detected, but not quantified in several different foods, such as turnips, garlics, agaves, garden onions, and italian sweet red peppers. dCMP is a deoxycytosine nucleotide containing one phosphate group esterified to the deoxyribose moiety in the 2'-,3'- or 5- positions.
Structure
Thumb
Synonyms
Chemical FormulaC9H14N3O7P
Average Molecular Weight307.1971
Monoisotopic Molecular Weight307.056936329
IUPAC Name{[(2R,3S,5R)-5-(4-amino-2-oxo-1,2-dihydropyrimidin-1-yl)-3-hydroxyoxolan-2-yl]methoxy}phosphonic acid
Traditional NamedCMP
CAS Registry Number1032-65-1
SMILES
NC1=NC(=O)N(C=C1)[C@H]1C[C@H](O)[C@@H](COP(O)(O)=O)O1
InChI Identifier
InChI=1S/C9H14N3O7P/c10-7-1-2-12(9(14)11-7)8-3-5(13)6(19-8)4-18-20(15,16)17/h1-2,5-6,8,13H,3-4H2,(H2,10,11,14)(H2,15,16,17)/t5-,6+,8+/m0/s1
InChI KeyNCMVOABPESMRCP-SHYZEUOFSA-N
Chemical Taxonomy
Description Belongs to the class of organic compounds known as pyrimidine 2'-deoxyribonucleoside monophosphates. These are pyrimidine nucleotides with a monophosphate group linked to the ribose moiety lacking a hydroxyl group at position 2.
KingdomOrganic compounds
Super ClassNucleosides, nucleotides, and analogues
ClassPyrimidine nucleotides
Sub ClassPyrimidine deoxyribonucleotides
Direct ParentPyrimidine 2'-deoxyribonucleoside monophosphates
Alternative Parents
Substituents
  • Pyrimidine 2'-deoxyribonucleoside monophosphate
  • Aminopyrimidine
  • Pyrimidone
  • Monoalkyl phosphate
  • Hydropyrimidine
  • Organic phosphoric acid derivative
  • Phosphoric acid ester
  • Pyrimidine
  • Imidolactam
  • Alkyl phosphate
  • Heteroaromatic compound
  • Tetrahydrofuran
  • Secondary alcohol
  • Oxacycle
  • Azacycle
  • Organoheterocyclic compound
  • Hydrocarbon derivative
  • Primary amine
  • Organic oxide
  • Organooxygen compound
  • Organonitrogen compound
  • Organopnictogen compound
  • Organic oxygen compound
  • Alcohol
  • Amine
  • Organic nitrogen compound
  • Aromatic heteromonocyclic compound
Molecular FrameworkAromatic heteromonocyclic compounds
External Descriptors
Ontology
Physiological effect
Disposition
Biological locationRoute of exposureSource
Process
Role
Physical Properties
StateSolid
Experimental Molecular Properties
PropertyValueReference
Melting PointNot AvailableNot Available
Boiling PointNot AvailableNot Available
Water SolubilityNot AvailableNot Available
LogPNot AvailableNot Available
Experimental Chromatographic Properties

Experimental Collision Cross Sections

Adduct TypeData SourceCCS Value (Å2)Reference
[M-H]-Astarita_neg158.730932474
[M-H]-Not Available162.4http://allccs.zhulab.cn/database/detail?ID=AllCCS00000162
[M+H]+Not Available165.585http://allccs.zhulab.cn/database/detail?ID=AllCCS00000162
Predicted Molecular Properties
Predicted Chromatographic Properties
Spectra
Biological Properties
Cellular Locations
  • Mitochondria
  • Nucleus
  • Lysosome
Biospecimen Locations
  • Feces
  • Saliva
Tissue LocationsNot Available
Pathways
Normal Concentrations
BiospecimenStatusValueAgeSexConditionReferenceDetails
FecesDetected but not QuantifiedNot QuantifiedAdult (>18 years old)Both
Normal
details
FecesDetected but not QuantifiedNot QuantifiedAdult (>18 years old)Both
Normal
details
FecesDetected but not QuantifiedNot QuantifiedAdult (>18 years old)Both
Normal
details
Abnormal Concentrations
BiospecimenStatusValueAgeSexConditionReferenceDetails
FecesDetected but not QuantifiedNot QuantifiedAdult (>18 years old)Both
Colorectal cancer
details
SalivaDetected but not QuantifiedNot QuantifiedAdult (>18 years old)MaleAttachment loss  details
SalivaDetected but not QuantifiedNot QuantifiedAdult (>18 years old)MalePeriodontal Probing Depth details
Associated Disorders and Diseases
Disease References
Colorectal cancer
  1. Goedert JJ, Sampson JN, Moore SC, Xiao Q, Xiong X, Hayes RB, Ahn J, Shi J, Sinha R: Fecal metabolomics: assay performance and association with colorectal cancer. Carcinogenesis. 2014 Sep;35(9):2089-96. doi: 10.1093/carcin/bgu131. Epub 2014 Jul 18. [PubMed:25037050 ]
Attachment loss
  1. Liebsch C, Pitchika V, Pink C, Samietz S, Kastenmuller G, Artati A, Suhre K, Adamski J, Nauck M, Volzke H, Friedrich N, Kocher T, Holtfreter B, Pietzner M: The Saliva Metabolome in Association to Oral Health Status. J Dent Res. 2019 Jun;98(6):642-651. doi: 10.1177/0022034519842853. Epub 2019 Apr 26. [PubMed:31026179 ]
Periodontal Probing Depth
  1. Liebsch C, Pitchika V, Pink C, Samietz S, Kastenmuller G, Artati A, Suhre K, Adamski J, Nauck M, Volzke H, Friedrich N, Kocher T, Holtfreter B, Pietzner M: The Saliva Metabolome in Association to Oral Health Status. J Dent Res. 2019 Jun;98(6):642-651. doi: 10.1177/0022034519842853. Epub 2019 Apr 26. [PubMed:31026179 ]
Associated OMIM IDs
DrugBank IDDB03798
Phenol Explorer Compound IDNot Available
FooDB IDFDB022488
KNApSAcK IDNot Available
Chemspider ID13343
KEGG Compound IDC00239
BioCyc IDDCMP
BiGG ID34352
Wikipedia LinkDCMP
METLIN ID6078
PubChem Compound13945
PDB IDNot Available
ChEBI ID15918
Food Biomarker OntologyNot Available
VMH IDDCMP
MarkerDB IDNot Available
Good Scents IDNot Available
References
Synthesis ReferenceTanaka, Toshiki; Yamada, Yasuki; Ikehara, Morio. Chemical synthesis of deoxyribonucleotide with a 5'-phosphoryl group on a polystyrene polymer support by the phosphotriester method. Chemical & Pharmaceutical Bulletin (1987), 35(7), 2726-33.
Material Safety Data Sheet (MSDS)Not Available
General References

Only showing the first 10 proteins. There are 12 proteins in total.

Enzymes

General function:
Involved in hydrolase activity
Specific function:
Hydrolyzes extracellular nucleotides into membrane permeable nucleosides.
Gene Name:
NT5E
Uniprot ID:
P21589
Molecular weight:
57948.125
Reactions
dCMP + Water → Deoxycytidine + Phosphatedetails
General function:
Involved in zinc ion binding
Specific function:
Supplies the nucleotide substrate for thymidylate synthetase.
Gene Name:
DCTD
Uniprot ID:
P32321
Molecular weight:
21013.96
Reactions
dCMP + Water → dUMP + Ammoniadetails
General function:
Involved in ATP binding
Specific function:
Catalyzes specific phosphoryl transfer from ATP to UMP and CMP.
Gene Name:
CMPK1
Uniprot ID:
P30085
Molecular weight:
20180.12
Reactions
Adenosine triphosphate + dCMP → ADP + dCDPdetails
General function:
Involved in nucleotide binding
Specific function:
Dephosphorylates the 5' and 2'(3')-phosphates of deoxyribonucleotides. Helps to regulate adenosine levels (By similarity).
Gene Name:
NT5C1B
Uniprot ID:
Q96P26
Molecular weight:
68803.055
Reactions
dCMP + Water → Deoxycytidine + Phosphatedetails
General function:
Involved in nucleotide binding
Specific function:
Dephosphorylates the 5' and 2'(3')-phosphates of deoxyribonucleotides and has a broad substrate specificity. Helps to regulate adenosine levels in heart during ischemia and hypoxia.
Gene Name:
NT5C1A
Uniprot ID:
Q9BXI3
Molecular weight:
41020.145
Reactions
dCMP + Water → Deoxycytidine + Phosphatedetails
General function:
Involved in metal ion binding
Specific function:
Dephosphorylates the 5' and 2'(3')-phosphates of deoxyribonucleotides, with a preference for dUMP and dTMP, intermediate activity towards dGMP, and low activity towards dCMP and dAMP.
Gene Name:
NT5C
Uniprot ID:
Q8TCD5
Molecular weight:
Not Available
Reactions
dCMP + Water → Deoxycytidine + Phosphatedetails
General function:
Involved in ATP binding
Specific function:
Required for the phosphorylation of the deoxyribonucleosides deoxycytidine (dC), deoxyguanosine (dG) and deoxyadenosine (dA). Has broad substrate specificity, and does not display selectivity based on the chirality of the substrate. It is also an essential enzyme for the phosphorylation of numerous nucleoside analogs widely employed as antiviral and chemotherapeutic agents.
Gene Name:
DCK
Uniprot ID:
P27707
Molecular weight:
30518.315
Reactions
NTP + Deoxycytidine → NDP + dCMPdetails
Adenosine triphosphate + Deoxycytidine → ADP + dCMPdetails
General function:
Involved in phosphatase activity
Specific function:
Dephosphorylates specifically the 5' and 2'(3')-phosphates of uracil and thymine deoxyribonucleotides, and so protects mitochondrial DNA replication from excess dTTP. Has only marginal activity towards dIMP and dGMP.
Gene Name:
NT5M
Uniprot ID:
Q9NPB1
Molecular weight:
Not Available
Reactions
dCMP + Water → Deoxycytidine + Phosphatedetails
General function:
Involved in magnesium ion binding
Specific function:
Can act both as nucleotidase and as phosphotransferase.
Gene Name:
NT5C3
Uniprot ID:
Q9H0P0
Molecular weight:
33914.91
Reactions
dCMP + Water → Deoxycytidine + Phosphatedetails
General function:
Involved in 5'-nucleotidase activity
Specific function:
May have a critical role in the maintenance of a constant composition of intracellular purine/pyrimidine nucleotides in cooperation with other nucleotidases. Preferentially hydrolyzes inosine 5'-monophosphate (IMP) and other purine nucleotides.
Gene Name:
NT5C2
Uniprot ID:
P49902
Molecular weight:
64969.2
Reactions
dCMP + Water → Deoxycytidine + Phosphatedetails

Only showing the first 10 proteins. There are 12 proteins in total.