Hmdb loader
Show more...Show more...Show more...Show more...
Record Information
Version5.0
StatusDetected but not Quantified
Creation Date2005-11-16 15:48:42 UTC
Update Date2023-02-21 17:14:54 UTC
HMDB IDHMDB0000528
Secondary Accession Numbers
  • HMDB0011746
  • HMDB00528
  • HMDB11746
Metabolite Identification
Common Name4,5-Dihydroorotic acid
Description4,5-Dihydroorotic acid, also known as dihydroorotate or hydroorotate is a pyrimidinemonocarboxylic acid that results from the base-catalysed cyclisation of N-alpha-carbethoxyasparagine. It is classified as a secondary amide, a monocarboxylic acid, a pyrimidinemonocarboxylic acid and a N-acylurea. 4,5-Dihydroorotic acid is a derivative of orotic acid which serves as an intermediate in pyrimidine biosynthesis. 4,5-Dihydroorotic acid exists in all living species, ranging from bacteria to plants to humans. 4,5-Dihydroorotic acid is synthesized by the enzyme known as Dihydroorotase (EC 3.5.2.3) which converts carbamoyl aspartic acid into 4,5-dihydroorotic acid as part of the de novo pyrimidine biosynthesis pathway (PMID: 13163076 ). 4,5-Dihydroorotic acid is also a substrate for the enzyme known as dihydroorotate dehydrogenase (DHODH). In mammalian species, DHODH catalyzes the fourth step in the de novo pyrimidine biosynthesis pathway, which involves the ubiquinone-mediated oxidation of dihydroorotate to orotate and the reduction of flavin mononucleotide (FMN) to dihydroflavin mononucleotide (FMNH2). Inhibition of DHODH activity with teriflunomide (an immunomodulatory drug) or expression with RNA interference results in reduced ROS generation and consequent apoptosis of transformed skin and prostate epithelial cells. Mutations in the DHOD gene have been shown to cause Miller syndrome, also known as Genee-Wiedemann syndrome, Wildervanck-Smith syndrome or post-axial acrofacial dystosis (PMID: 19915526 ).
Structure
Thumb
Synonyms
Chemical FormulaC5H6N2O4
Average Molecular Weight158.1121
Monoisotopic Molecular Weight158.03275669
IUPAC Name2,6-dioxo-1,3-diazinane-4-carboxylic acid
Traditional Namedihydroorotic acid
CAS Registry Number155-54-4
SMILES
OC(=O)C1CC(=O)NC(=O)N1
InChI Identifier
InChI=1S/C5H6N2O4/c8-3-1-2(4(9)10)6-5(11)7-3/h2H,1H2,(H,9,10)(H2,6,7,8,11)
InChI KeyUFIVEPVSAGBUSI-UHFFFAOYSA-N
Chemical Taxonomy
Description Belongs to the class of organic compounds known as alpha amino acids and derivatives. These are amino acids in which the amino group is attached to the carbon atom immediately adjacent to the carboxylate group (alpha carbon), or a derivative thereof.
KingdomOrganic compounds
Super ClassOrganic acids and derivatives
ClassCarboxylic acids and derivatives
Sub ClassAmino acids, peptides, and analogues
Direct ParentAlpha amino acids and derivatives
Alternative Parents
Substituents
  • Alpha-amino acid or derivatives
  • N-acyl urea
  • Pyrimidone
  • Ureide
  • 1,3-diazinane
  • Pyrimidine
  • Dicarboximide
  • Urea
  • Carbonic acid derivative
  • Azacycle
  • Monocarboxylic acid or derivatives
  • Carboxylic acid
  • Organoheterocyclic compound
  • Hydrocarbon derivative
  • Organic oxide
  • Organooxygen compound
  • Organonitrogen compound
  • Organopnictogen compound
  • Organic oxygen compound
  • Carbonyl group
  • Organic nitrogen compound
  • Aliphatic heteromonocyclic compound
Molecular FrameworkAliphatic heteromonocyclic compounds
External Descriptors
Ontology
Physiological effectNot Available
Disposition
Process
RoleNot Available
Physical Properties
StateSolid
Experimental Molecular Properties
PropertyValueReference
Melting PointNot AvailableNot Available
Boiling PointNot AvailableNot Available
Water SolubilityNot AvailableNot Available
LogPNot AvailableNot Available
Experimental Chromatographic PropertiesNot Available
Predicted Molecular Properties
Predicted Chromatographic Properties
Spectra
Biological Properties
Cellular Locations
  • Cytoplasm
Biospecimen Locations
  • Blood
  • Feces
  • Urine
Tissue Locations
  • Prostate
Pathways
Normal Concentrations
BiospecimenStatusValueAgeSexConditionReferenceDetails
FecesDetected but not QuantifiedNot QuantifiedAdult (>18 years old)Both
Normal
details
FecesDetected but not QuantifiedNot QuantifiedAdult (>18 years old)Both
Normal
details
Abnormal Concentrations
BiospecimenStatusValueAgeSexConditionReferenceDetails
BloodExpected but not QuantifiedNot QuantifiedNot SpecifiedNot SpecifiedCancer patients undergoing total body irradiation details
UrineDetected but not QuantifiedNot QuantifiedNot SpecifiedNot SpecifiedCancer patients undergoing total body irradiation details
Associated Disorders and Diseases
Disease ReferencesNone
Associated OMIM IDsNone
DrugBank IDNot Available
Phenol Explorer Compound IDNot Available
FooDB IDFDB022096
KNApSAcK IDNot Available
Chemspider ID628
KEGG Compound IDC00337
BioCyc IDNot Available
BiGG IDNot Available
Wikipedia Link4,5-Dihydroorotic_acid
METLIN ID5513
PubChem Compound648
PDB IDNot Available
ChEBI ID30865
Food Biomarker OntologyNot Available
VMH IDDHOR_S
MarkerDB IDNot Available
Good Scents IDNot Available
References
Synthesis ReferenceBurger, Klaus; Neuhauser, Horst; Rudolph, Martin. A new, preparatively simple way to dihydroorotic acid, 1-methyl-4,5-dihydroorotic acid and their derivatives. Chemiker-Zeitung (1990), 114(7-8), 251-5.
Material Safety Data Sheet (MSDS)Not Available
General References
  1. Ng SB, Buckingham KJ, Lee C, Bigham AW, Tabor HK, Dent KM, Huff CD, Shannon PT, Jabs EW, Nickerson DA, Shendure J, Bamshad MJ: Exome sequencing identifies the cause of a mendelian disorder. Nat Genet. 2010 Jan;42(1):30-5. doi: 10.1038/ng.499. Epub 2009 Nov 13. [PubMed:19915526 ]
  2. Sreekumar A, Poisson LM, Rajendiran TM, Khan AP, Cao Q, Yu J, Laxman B, Mehra R, Lonigro RJ, Li Y, Nyati MK, Ahsan A, Kalyana-Sundaram S, Han B, Cao X, Byun J, Omenn GS, Ghosh D, Pennathur S, Alexander DC, Berger A, Shuster JR, Wei JT, Varambally S, Beecher C, Chinnaiyan AM: Metabolomic profiles delineate potential role for sarcosine in prostate cancer progression. Nature. 2009 Feb 12;457(7231):910-4. doi: 10.1038/nature07762. [PubMed:19212411 ]
  3. LIEBERMAN I, KORNBERG A: Enzymatic synthesis and breakdown of a pyrimidine, orotic acid. I. Dihydroortic acid, ureidosuccinic acid, and 5-carboxymethylhydantoin. J Biol Chem. 1954 Apr;207(2):911-24. [PubMed:13163076 ]

Enzymes

General function:
Involved in catalytic activity
Specific function:
Catalyzes the conversion of dihydroorotate to orotate with quinone as electron acceptor.
Gene Name:
DHODH
Uniprot ID:
Q02127
Molecular weight:
42866.93
General function:
Involved in hydrolase activity
Specific function:
This protein is a "fusion" protein encoding four enzymatic activities of the pyrimidine pathway (GATase, CPSase, ATCase and DHOase).
Gene Name:
CAD
Uniprot ID:
P27708
Molecular weight:
242981.73