Hmdb loader
Show more...Show more...Show more...Show more...Show more...Show more...Show more...
Record Information
Version5.0
StatusDetected and Quantified
Creation Date2005-11-16 15:48:42 UTC
Update Date2023-05-30 20:55:55 UTC
HMDB IDHMDB0000292
Secondary Accession Numbers
  • HMDB00292
Metabolite Identification
Common NameXanthine
DescriptionXanthine, also known as 2,6-dioxopurine, belongs to the class of organic compounds known as xanthines. These are purine derivatives with a ketone group conjugated at carbons 2 and 6 of the purine moiety. Xanthine is also classified as an oxopurine. An oxopurine in which the purine ring is substituted by oxo groups at positions 2 and 6 and N-9 is protonated. Xanthine exists in all living species, ranging from bacteria to plants to humans. In plants, several stimulants can be derived from xanthine, including caffeine, theophylline, and theobromine. Derivatives of xanthine (known collectively as xanthines) are a group of alkaloids commonly used for their effects as mild stimulants and as bronchodilators, notably in the treatment of asthma or influenza symptoms. Within humans, xanthine participates in a number of enzymatic reactions. In particular, xanthine can be biosynthesized from guanine; which is mediated by the enzyme guanine deaminase. In addition, xanthine and ribose 1-phosphate can be biosynthesized from xanthosine through the action of the enzyme purine nucleoside phosphorylase. In humans and other primates, xanthine can be converted to uric acid by the action of the xanthine oxidase enzyme. People with rare genetic disorders, specifically xanthinuria and Lesch-Nyhan syndrome, lack sufficient xanthine oxidase and cannot convert xanthine to uric acid. Individuals with xanthinuria have unusually high concentrations of xanthine in their blood and urine, which can lead to health problems such as renal failure and xanthine kidney stones. Individuals with Lesch-Nyhan syndrome have a deficiency of the enzyme hypoxanthine-guanine phosphoribosyltransferase (HGPRT). The HGPRT deficiency causes a build-up of uric acid in all body fluids. This results in both high levels of uric acid in the blood and urine, associated with severe gout and kidney problems. Neurological signs include poor muscle control and moderate intellectual disability.
Structure
Thumb
Synonyms
Chemical FormulaC5H4N4O2
Average Molecular Weight152.1109
Monoisotopic Molecular Weight152.033425392
IUPAC Name2,3,6,7-tetrahydro-1H-purine-2,6-dione
Traditional Namexanthine
CAS Registry Number69-89-6
SMILES
O=C1NC2=C(NC=N2)C(=O)N1
InChI Identifier
InChI=1S/C5H4N4O2/c10-4-2-3(7-1-6-2)8-5(11)9-4/h1H,(H3,6,7,8,9,10,11)
InChI KeyLRFVTYWOQMYALW-UHFFFAOYSA-N
Chemical Taxonomy
Description Belongs to the class of organic compounds known as xanthines. These are purine derivatives with a ketone group conjugated at carbons 2 and 6 of the purine moiety.
KingdomOrganic compounds
Super ClassOrganoheterocyclic compounds
ClassImidazopyrimidines
Sub ClassPurines and purine derivatives
Direct ParentXanthines
Alternative Parents
Substituents
  • Xanthine
  • 6-oxopurine
  • Purinone
  • Alkaloid or derivatives
  • Pyrimidone
  • Pyrimidine
  • Azole
  • Imidazole
  • Heteroaromatic compound
  • Vinylogous amide
  • Lactam
  • Urea
  • Azacycle
  • Hydrocarbon derivative
  • Organic oxide
  • Organooxygen compound
  • Organonitrogen compound
  • Organic nitrogen compound
  • Organopnictogen compound
  • Organic oxygen compound
  • Aromatic heteropolycyclic compound
Molecular FrameworkAromatic heteropolycyclic compounds
External Descriptors
Ontology
Physiological effect
Disposition
Biological locationSource
Process
Role
Physical Properties
StateSolid
Experimental Molecular Properties
PropertyValueReference
Melting Point> 300 °CNot Available
Boiling PointNot AvailableNot Available
Water Solubility0.069 mg/mL at 16 °C; 9.5 mg/mL (sodium salt)MERCK INDEX (1996); Human Metabolome Project (salt)
LogP-0.73HANSCH,C ET AL. (1995)
Experimental Chromatographic Properties

Experimental Collision Cross Sections

Adduct TypeData SourceCCS Value (Å2)Reference
[M-H]-Astarita_neg119.730932474
[M-H]-Baker124.36530932474
[M-H]-MetCCS_test_neg118.530932474
[M+H]+Baker138.10530932474
[M+H]+Astarita_pos124.330932474
[M+H]+MetCCS_test_pos130.34830932474
[M-H]-Not Available121.4http://allccs.zhulab.cn/database/detail?ID=AllCCS00000368
[M+H]+Not Available134.2http://allccs.zhulab.cn/database/detail?ID=AllCCS00000368
Predicted Molecular Properties
Predicted Chromatographic Properties
Spectra
Biological Properties
Cellular Locations
  • Cytoplasm
  • Peroxisome
Biospecimen Locations
  • Blood
  • Cerebrospinal Fluid (CSF)
  • Feces
  • Saliva
  • Sweat
  • Urine
Tissue Locations
  • Bladder
  • Epidermis
  • Fibroblasts
  • Intestine
  • Kidney
  • Liver
  • Placenta
  • Prostate
  • Skeletal Muscle
  • Testis
Pathways
Normal Concentrations
Abnormal Concentrations
Associated Disorders and Diseases
Disease References
Lesch-Nyhan syndrome
  1. Harkness RA, McCreanor GM, Watts RW: Lesch-Nyhan syndrome and its pathogenesis: purine concentrations in plasma and urine with metabolite profiles in CSF. J Inherit Metab Dis. 1988;11(3):239-52. [PubMed:3148065 ]
  2. Gregoric A, Rabelink GM, Kokalj Vokac N, Varda NM, Zagradisnik B: Eighteen-year follow-up of a patient with partial hypoxanthine phosphoribosyltransferase deficiency and a new mutation. Pediatr Nephrol. 2005 Sep;20(9):1346-8. Epub 2005 Jun 18. [PubMed:15965771 ]
  3. Puig JG, Torres RJ, Mateos FA, Ramos TH, Arcas JM, Buno AS, O'Neill P: The spectrum of hypoxanthine-guanine phosphoribosyltransferase (HPRT) deficiency. Clinical experience based on 22 patients from 18 Spanish families. Medicine (Baltimore). 2001 Mar;80(2):102-12. [PubMed:11307586 ]
Canavan disease
  1. Tavazzi B, Lazzarino G, Leone P, Amorini AM, Bellia F, Janson CG, Di Pietro V, Ceccarelli L, Donzelli S, Francis JS, Giardina B: Simultaneous high performance liquid chromatographic separation of purines, pyrimidines, N-acetylated amino acids, and dicarboxylic acids for the chemical diagnosis of inborn errors of metabolism. Clin Biochem. 2005 Nov;38(11):997-1008. Epub 2005 Sep 1. [PubMed:16139832 ]
Xanthinuria type 1
  1. Mateos FA, Puig JG, Jimenez ML, Fox IH: Hereditary xanthinuria. Evidence for enhanced hypoxanthine salvage. J Clin Invest. 1987 Mar;79(3):847-52. [PubMed:3818951 ]
  2. Mraz M, Hurba O, Bartl J, Dolezel Z, Marinaki A, Fairbanks L, Stiburkova B: Modern diagnostic approach to hereditary xanthinuria. Urolithiasis. 2015 Feb;43(1):61-7. doi: 10.1007/s00240-014-0734-4. Epub 2014 Nov 6. [PubMed:25370766 ]
  3. Eggermann T, Spengler S, Denecke B, Zerres K, Mache CJ: Multi-exon deletion in the XDH gene as a cause of classical xanthinuria. Clin Nephrol. 2013 Jan;79(1):78-80. [PubMed:23249873 ]
Xanthinuria type II
  1. Zannolli R, Micheli V, Mazzei MA, Sacco P, Piomboni P, Bruni E, Miracco C, de Santi MM, Terrosi Vagnoli P, Volterrani L, Pellegrini L, Livi W, Lucani B, Gonnelli S, Burlina AB, Jacomelli G, Macucci F, Pucci L, Fimiani M, Swift JA, Zappella M, Morgese G: Hereditary xanthinuria type II associated with mental delay, autism, cortical renal cysts, nephrocalcinosis, osteopenia, and hair and teeth defects. J Med Genet. 2003 Nov;40(11):e121. [PubMed:14627688 ]
Molybdenium co-factor deficiency
  1. Aukett A, Bennett MJ, Hosking GP: Molybdenum co-factor deficiency: an easily missed inborn error of metabolism. Dev Med Child Neurol. 1988 Aug;30(4):531-5. [PubMed:3169394 ]
  2. Nagappa M, Bindu PS, Taly AB, Sinha S, Bharath RD: Child Neurology: Molybdenum cofactor deficiency. Neurology. 2015 Dec 8;85(23):e175-8. doi: 10.1212/WNL.0000000000002194. [PubMed:26644055 ]
Uremia
  1. Vanholder R, De Smet R, Glorieux G, Argiles A, Baurmeister U, Brunet P, Clark W, Cohen G, De Deyn PP, Deppisch R, Descamps-Latscha B, Henle T, Jorres A, Lemke HD, Massy ZA, Passlick-Deetjen J, Rodriguez M, Stegmayr B, Stenvinkel P, Tetta C, Wanner C, Zidek W: Review on uremic toxins: classification, concentration, and interindividual variability. Kidney Int. 2003 May;63(5):1934-43. doi: 10.1046/j.1523-1755.2003.00924.x. [PubMed:12675874 ]
Degenerative disc disease
  1. Eells JT, Spector R: Purine and pyrimidine base and nucleoside concentrations in human cerebrospinal fluid and plasma. Neurochem Res. 1983 Nov;8(11):1451-7. [PubMed:6656991 ]
Hydrocephalus
  1. Castro-Gago M, Rodriguez IN, Rodriguez-Nunez A, Guitian JP, Rocamonde SL, Rodriguez-Segade S: Therapeutic criteria in hydrocephalic children. Childs Nerv Syst. 1989 Dec;5(6):361-3. [PubMed:2611770 ]
3-Methyl-crotonyl-glycinuria
  1. de Kremer RD, Latini A, Suormala T, Baumgartner ER, Larovere L, Civallero G, Guelbert N, Paschini-Capra A, Depetris-Boldini C, Mayor CQ: Leukodystrophy and CSF purine abnormalities associated with isolated 3-methylcrotonyl-CoA carboxylase deficiency. Metab Brain Dis. 2002 Mar;17(1):13-8. [PubMed:11893004 ]
Colorectal cancer
  1. Brown DG, Rao S, Weir TL, O'Malia J, Bazan M, Brown RJ, Ryan EP: Metabolomics and metabolic pathway networks from human colorectal cancers, adjacent mucosa, and stool. Cancer Metab. 2016 Jun 6;4:11. doi: 10.1186/s40170-016-0151-y. eCollection 2016. [PubMed:27275383 ]
  2. Sinha R, Ahn J, Sampson JN, Shi J, Yu G, Xiong X, Hayes RB, Goedert JJ: Fecal Microbiota, Fecal Metabolome, and Colorectal Cancer Interrelations. PLoS One. 2016 Mar 25;11(3):e0152126. doi: 10.1371/journal.pone.0152126. eCollection 2016. [PubMed:27015276 ]
  3. Goedert JJ, Sampson JN, Moore SC, Xiao Q, Xiong X, Hayes RB, Ahn J, Shi J, Sinha R: Fecal metabolomics: assay performance and association with colorectal cancer. Carcinogenesis. 2014 Sep;35(9):2089-96. doi: 10.1093/carcin/bgu131. Epub 2014 Jul 18. [PubMed:25037050 ]
Crohn's disease
  1. Kolho KL, Pessia A, Jaakkola T, de Vos WM, Velagapudi V: Faecal and Serum Metabolomics in Paediatric Inflammatory Bowel Disease. J Crohns Colitis. 2017 Mar 1;11(3):321-334. doi: 10.1093/ecco-jcc/jjw158. [PubMed:27609529 ]
Ulcerative colitis
  1. Kolho KL, Pessia A, Jaakkola T, de Vos WM, Velagapudi V: Faecal and Serum Metabolomics in Paediatric Inflammatory Bowel Disease. J Crohns Colitis. 2017 Mar 1;11(3):321-334. doi: 10.1093/ecco-jcc/jjw158. [PubMed:27609529 ]
Cystic fibrosis
  1. Adriana Nori de Macedo. Robust capillary electrophoresis methods for biomarker discovery and routine measurements in clinical and epidemiological applications. March 2017 [Link]
Eosinophilic esophagitis
  1. Slae, M., Huynh, H., Wishart, D.S. (2014). Analysis of 30 normal pediatric urine samples via NMR spectroscopy (unpublished work). NA.
Molybdenum cofactor deficiency
  1. van Gennip AH, Abeling NG, Stroomer AE, Overmars H, Bakker HD: The detection of molybdenum cofactor deficiency: clinical symptomatology and urinary metabolite profile. J Inherit Metab Dis. 1994;17(1):142-5. [PubMed:8051926 ]
  2. Zaki MS, Selim L, El-Bassyouni HT, Issa MY, Mahmoud I, Ismail S, Girgis M, Sadek AA, Gleeson JG, Abdel Hamid MS: Molybdenum cofactor and isolated sulphite oxidase deficiencies: Clinical and molecular spectrum among Egyptian patients. Eur J Paediatr Neurol. 2016 Sep;20(5):714-22. doi: 10.1016/j.ejpn.2016.05.011. Epub 2016 May 30. [PubMed:27289259 ]
Sulfite oxidase deficiency, ISOLATED
  1. Zaki MS, Selim L, El-Bassyouni HT, Issa MY, Mahmoud I, Ismail S, Girgis M, Sadek AA, Gleeson JG, Abdel Hamid MS: Molybdenum cofactor and isolated sulphite oxidase deficiencies: Clinical and molecular spectrum among Egyptian patients. Eur J Paediatr Neurol. 2016 Sep;20(5):714-22. doi: 10.1016/j.ejpn.2016.05.011. Epub 2016 May 30. [PubMed:27289259 ]
  2. Rashed MS, Saadallah AA, Rahbeeni Z, Eyaid W, Seidahmed MZ, Al-Shahwan S, Salih MA, Osman ME, Al-Amoudi M, Al-Ahaidib L, Jacob M: Determination of urinary S-sulphocysteine, xanthine and hypoxanthine by liquid chromatography-electrospray tandem mass spectrometry. Biomed Chromatogr. 2005 Apr;19(3):223-30. [PubMed:15558695 ]
Adenosine kinase deficiency
  1. Bjursell MK, Blom HJ, Cayuela JA, Engvall ML, Lesko N, Balasubramaniam S, Brandberg G, Halldin M, Falkenberg M, Jakobs C, Smith D, Struys E, von Dobeln U, Gustafsson CM, Lundeberg J, Wedell A: Adenosine kinase deficiency disrupts the methionine cycle and causes hypermethioninemia, encephalopathy, and abnormal liver function. Am J Hum Genet. 2011 Oct 7;89(4):507-15. doi: 10.1016/j.ajhg.2011.09.004. Epub 2011 Sep 28. [PubMed:21963049 ]
Phosphoribosylpyrophosphate Synthetase Superactivity
  1. Garcia-Pavia P, Torres RJ, Rivero M, Ahmed M, Garcia-Puig J, Becker MA: Phosphoribosylpyrophosphate synthetase overactivity as a cause of uric acid overproduction in a young woman. Arthritis Rheum. 2003 Jul;48(7):2036-41. doi: 10.1002/art.11058. [PubMed:12847698 ]
Associated OMIM IDs
DrugBank IDDB02134
Phenol Explorer Compound IDNot Available
FooDB IDFDB001977
KNApSAcK IDC00019660
Chemspider ID1151
KEGG Compound IDC00385
BioCyc IDXANTHINE
BiGG ID34825
Wikipedia LinkXanthine
METLIN ID82
PubChem Compound1188
PDB IDNot Available
ChEBI ID17712
Food Biomarker OntologyNot Available
VMH IDXAN
MarkerDB IDMDB00000137
Good Scents IDNot Available
References
Synthesis ReferenceProcedure for the production of xanthine and xanthine-like materials. Fr. (1967), 4 pp.
Material Safety Data Sheet (MSDS)Not Available
General References

Enzymes

General function:
Involved in oxidoreductase activity
Specific function:
Key enzyme in purine degradation. Catalyzes the oxidation of hypoxanthine to xanthine. Catalyzes the oxidation of xanthine to uric acid. Contributes to the generation of reactive oxygen species. Has also low oxidase activity towards aldehydes (in vitro).
Gene Name:
XDH
Uniprot ID:
P47989
Molecular weight:
146422.99
Reactions
Hypoxanthine + NAD + Water → Xanthine + NADHdetails
Xanthine + Water + Oxygen → Uric acid + Hydrogen peroxidedetails
Hypoxanthine + NAD + Water → Xanthine + NADH + Hydrogen Iondetails
Hypoxanthine + Oxygen + Water → Xanthine + Hydrogen peroxidedetails
Xanthine + NAD + Water → Uric acid + NADH + Hydrogen Iondetails
General function:
Involved in hypoxanthine phosphoribosyltransferase activity
Specific function:
Converts guanine to guanosine monophosphate, and hypoxanthine to inosine monophosphate. Transfers the 5-phosphoribosyl group from 5-phosphoribosylpyrophosphate onto the purine. Plays a central role in the generation of purine nucleotides through the purine salvage pathway.
Gene Name:
HPRT1
Uniprot ID:
P00492
Molecular weight:
24579.155
Reactions
Xanthylic acid + Pyrophosphate → Xanthine + Phosphoribosyl pyrophosphatedetails
General function:
Involved in hydrolase activity
Specific function:
Catalyzes the hydrolytic deamination of guanine, producing xanthine and ammonia (By similarity).
Gene Name:
GDA
Uniprot ID:
Q9Y2T3
Molecular weight:
52836.65
Reactions
Guanine + Water → Xanthine + Ammoniadetails
General function:
Involved in purine-nucleoside phosphorylase activity
Specific function:
The purine nucleoside phosphorylases catalyze the phosphorolytic breakdown of the N-glycosidic bond in the beta-(deoxy)ribonucleoside molecules, with the formation of the corresponding free purine bases and pentose-1-phosphate.
Gene Name:
PNP
Uniprot ID:
P00491
Molecular weight:
32117.69
Reactions
Xanthosine + Phosphate → Xanthine + Ribose 1-phosphatedetails