Hmdb loader
Show more...Show more...Show more...Show more...Show more...Show more...Show more...
Record Information
Version5.0
StatusDetected and Quantified
Creation Date2005-11-16 15:48:42 UTC
Update Date2023-02-21 17:14:33 UTC
HMDB IDHMDB0000143
Secondary Accession Numbers
  • HMDB0005762
  • HMDB00143
  • HMDB05762
Metabolite Identification
Common NameD-Galactose
DescriptionD-Galactose (CAS: 59-23-4) is an aldohexose that occurs naturally in the D-form in lactose, cerebrosides, gangliosides, and mucoproteins. D-Galactose is an energy-providing nutrient and also a necessary basic substrate for the biosynthesis of many macromolecules in the body. Metabolic pathways for D-galactose are important not only for the provision of these pathways but also for the prevention of D-galactose metabolite accumulation. The main source of D-galactose is lactose in the milk of mammals, but it can also be found in some fruits and vegetables. Utilization of D-galactose in all living cells is initiated by the phosphorylation of the hexose by the enzyme galactokinase (E.C. 2.7.1.6) (GALK) to form D-galactose-1-phosphate. In the presence of D-galactose-1-phosphate uridyltransferase (E.C. 2.7.7.12) (GALT) D-galactose-1-phosphate is exchanged with glucose-1-phosphate in UDP-glucose to form UDP-galactose. Glucose-1-phosphate will then enter the glycolytic pathway for energy production. Deficiency of the enzyme GALT in galactosemic patients leads to the accumulation of D-galactose-1-phosphate. Classic galactosemia, a term that denotes the presence of D-galactose in the blood, is the rare inborn error of D-galactose metabolism, diagnosed by the deficiency of the second enzyme of the D-galactose assimilation pathway, GALT, which, in turn, is caused by mutations at the GALT gene (PMID: 15256214 , 11020650 , 10408771 ). Galactose in the urine is a biomarker for the consumption of milk.
Structure
Thumb
Synonyms
Chemical FormulaC6H12O6
Average Molecular Weight180.1559
Monoisotopic Molecular Weight180.063388116
IUPAC Name(2S,3R,4S,5R,6R)-6-(hydroxymethyl)oxane-2,3,4,5-tetrol
Traditional Namegalactose
CAS Registry Number3646-73-9
SMILES
OC[C@H]1O[C@H](O)[C@H](O)[C@@H](O)[C@H]1O
InChI Identifier
InChI=1S/C6H12O6/c7-1-2-3(8)4(9)5(10)6(11)12-2/h2-11H,1H2/t2-,3+,4+,5-,6+/m1/s1
InChI KeyWQZGKKKJIJFFOK-PHYPRBDBSA-N
Chemical Taxonomy
Description Belongs to the class of organic compounds known as hexoses. These are monosaccharides in which the sugar unit is a is a six-carbon containing moeity.
KingdomOrganic compounds
Super ClassOrganic oxygen compounds
ClassOrganooxygen compounds
Sub ClassCarbohydrates and carbohydrate conjugates
Direct ParentHexoses
Alternative Parents
Substituents
  • Hexose monosaccharide
  • Oxane
  • Secondary alcohol
  • Hemiacetal
  • Oxacycle
  • Organoheterocyclic compound
  • Polyol
  • Hydrocarbon derivative
  • Primary alcohol
  • Alcohol
  • Aliphatic heteromonocyclic compound
Molecular FrameworkAliphatic heteromonocyclic compounds
External Descriptors
Ontology
Physiological effectNot Available
Disposition
Biological locationSource
Process
Role
Physical Properties
StateSolid
Experimental Molecular Properties
PropertyValueReference
Melting Point170 °CNot Available
Boiling PointNot AvailableNot Available
Water Solubility683 mg/mLNot Available
LogPNot AvailableNot Available
Experimental Chromatographic Properties

Experimental Collision Cross Sections

Adduct TypeData SourceCCS Value (Å2)Reference
[M-H]-Astarita_neg130.030932474
Predicted Molecular Properties
Predicted Chromatographic Properties
Spectra
Biological Properties
Cellular Locations
  • Extracellular
  • Lysosome
Biospecimen Locations
  • Blood
  • Breast Milk
  • Cellular Cytoplasm
  • Cerebrospinal Fluid (CSF)
  • Feces
  • Saliva
  • Urine
Tissue Locations
  • Brain
  • Liver
  • Prostate
Pathways
Normal Concentrations
Abnormal Concentrations
Associated Disorders and Diseases
Disease References
Galactose-1-phosphate uridyltransferase deficiency
  1. Ning C, Segal S: Plasma galactose and galactitol concentration in patients with galactose-1-phosphate uridyltransferase deficiency galactosemia: determination by gas chromatography/mass spectrometry. Metabolism. 2000 Nov;49(11):1460-6. [PubMed:11092512 ]
Galactosemia type 1
  1. Ning C, Segal S: Plasma galactose and galactitol concentration in patients with galactose-1-phosphate uridyltransferase deficiency galactosemia: determination by gas chromatography/mass spectrometry. Metabolism. 2000 Nov;49(11):1460-6. [PubMed:11092512 ]
Patent Ductus Venosus
  1. Sakura N, Mizoguchi N, Eguchi T, Ono H, Mawatari H, Naitou K, Ito K: Elevated plasma bile acids in hypergalactosaemic neonates: a diagnostic clue to portosystemic shunts. Eur J Pediatr. 1997 Sep;156(9):716-8. [PubMed:9296537 ]
Galactosemia
  1. Chen J, Yager C, Reynolds R, Palmieri M, Segal S: Erythrocyte galactose 1-phosphate quantified by isotope-dilution gas chromatography-mass spectrometry. Clin Chem. 2002;48(4):604-12. [PubMed:11901058 ]
Colorectal cancer
  1. Brown DG, Rao S, Weir TL, O'Malia J, Bazan M, Brown RJ, Ryan EP: Metabolomics and metabolic pathway networks from human colorectal cancers, adjacent mucosa, and stool. Cancer Metab. 2016 Jun 6;4:11. doi: 10.1186/s40170-016-0151-y. eCollection 2016. [PubMed:27275383 ]
  2. Sinha R, Ahn J, Sampson JN, Shi J, Yu G, Xiong X, Hayes RB, Goedert JJ: Fecal Microbiota, Fecal Metabolome, and Colorectal Cancer Interrelations. PLoS One. 2016 Mar 25;11(3):e0152126. doi: 10.1371/journal.pone.0152126. eCollection 2016. [PubMed:27015276 ]
  3. Goedert JJ, Sampson JN, Moore SC, Xiao Q, Xiong X, Hayes RB, Ahn J, Shi J, Sinha R: Fecal metabolomics: assay performance and association with colorectal cancer. Carcinogenesis. 2014 Sep;35(9):2089-96. doi: 10.1093/carcin/bgu131. Epub 2014 Jul 18. [PubMed:25037050 ]
Eosinophilic esophagitis
  1. Slae, M., Huynh, H., Wishart, D.S. (2014). Analysis of 30 normal pediatric urine samples via NMR spectroscopy (unpublished work). NA.
Associated OMIM IDs
  • 230400 (Galactose-1-phosphate uridyltransferase deficiency)
  • 230400 (Galactosemia type 1)
  • 601466 (Patent Ductus Venosus)
  • 114500 (Colorectal cancer)
  • 610247 (Eosinophilic esophagitis)
DrugBank IDNot Available
Phenol Explorer Compound IDNot Available
FooDB IDFDB021787
KNApSAcK IDC00001119
Chemspider IDNot Available
KEGG Compound IDC00984
BioCyc IDALPHA-D-GALACTOSE
BiGG IDNot Available
Wikipedia LinkGalactose
METLIN IDNot Available
PubChem Compound439357
PDB IDNot Available
ChEBI ID28061
Food Biomarker OntologyNot Available
VMH IDGAL
MarkerDB IDNot Available
Good Scents IDNot Available
References
Synthesis Reference Avigad, Gad. Synthesis of D-galactose-6-t and D-galactosides-6-t. Carbohydrate Research (1967), 3(4), 430-4.
Material Safety Data Sheet (MSDS)Not Available
General References

Only showing the first 10 proteins. There are 15 proteins in total.

Enzymes

General function:
Involved in oxidoreductase activity
Specific function:
Catalyzes the NADPH-dependent reduction of a wide variety of carbonyl-containing compounds to their corresponding alcohols with a broad range of catalytic efficiencies.
Gene Name:
AKR1B1
Uniprot ID:
P15121
Molecular weight:
35853.125
General function:
Involved in ATP binding
Specific function:
Not Available
Gene Name:
HK3
Uniprot ID:
P52790
Molecular weight:
99024.56
Reactions
Adenosine triphosphate + D-Galactose → ADP + Glucose 6-phosphatedetails
General function:
Involved in ATP binding
Specific function:
Not Available
Gene Name:
HK2
Uniprot ID:
P52789
Molecular weight:
102379.06
Reactions
Adenosine triphosphate + D-Galactose → ADP + Glucose 6-phosphatedetails
General function:
Involved in ATP binding
Specific function:
Not Available
Gene Name:
HK1
Uniprot ID:
P19367
Molecular weight:
102485.1
Reactions
Adenosine triphosphate + D-Galactose → ADP + Glucose 6-phosphatedetails
General function:
Involved in galactosylceramidase activity
Specific function:
Hydrolyzes the galactose ester bonds of galactosylceramide, galactosylsphingosine, lactosylceramide, and monogalactosyldiglyceride. Enzyme with very low activity responsible for the lysosomal catabolism of galactosylceramide, a major lipid in myelin, kidney and epithelial cells of small intestine and colon.
Gene Name:
GALC
Uniprot ID:
P54803
Molecular weight:
77062.86
General function:
Involved in hydrolase activity, hydrolyzing O-glycosyl compounds
Specific function:
LPH splits lactose in the small intestine.
Gene Name:
LCT
Uniprot ID:
P09848
Molecular weight:
218584.77
General function:
Involved in catalytic activity
Specific function:
Not Available
Gene Name:
GLA
Uniprot ID:
P06280
Molecular weight:
Not Available
General function:
Involved in hydrolase activity, hydrolyzing O-glycosyl compounds
Specific function:
Cleaves beta-linked terminal galactosyl residues from gangliosides, glycoproteins, and glycosaminoglycans. Isoform 2 has no beta-galactosidase catalytic activity, but plays functional roles in the formation of extracellular elastic fibers (elastogenesis) and in the development of connective tissue. Seems to be identical to the elastin-binding protein (EBP), a major component of the non-integrin cell surface receptor expressed on fibroblasts, smooth muscle cells, chondroblasts, leukocytes, and certain cancer cell types. In elastin producing cells, associates with tropoelastin intracellularly and functions as a recycling molecular chaperone which facilitates the secretions of tropoelastin and its assembly into elastic fibers.
Gene Name:
GLB1
Uniprot ID:
P16278
Molecular weight:
Not Available
General function:
Involved in galactokinase activity
Specific function:
Acts on GalNAc. Also acts as a galactokinase when galactose is present at high concentrations. May be involved in a salvage pathway for the reutilization of free GalNAc derived from the degradation of complex carbohydrates.
Gene Name:
GALK2
Uniprot ID:
Q01415
Molecular weight:
49234.57
General function:
Involved in galactokinase activity
Specific function:
Major enzyme for galactose metabolism.
Gene Name:
GALK1
Uniprot ID:
P51570
Molecular weight:
42271.805

Only showing the first 10 proteins. There are 15 proteins in total.