Hmdb loader
Show more...Show more...Show more...Show more...
Record Information
Version5.0
StatusDetected and Quantified
Creation Date2005-11-16 15:48:42 UTC
Update Date2023-02-21 17:14:31 UTC
HMDB IDHMDB0000118
Secondary Accession Numbers
  • HMDB0004285
  • HMDB00118
  • HMDB04285
Metabolite Identification
Common NameHomovanillic acid
DescriptionHomovanillic acid (HVA), also known as homovanillate, belongs to the class of organic compounds known as methoxyphenols. Methoxyphenols are compounds containing a methoxy group attached to the benzene ring of a phenol moiety. HVA is also classified as a catechol. HVA is a major catecholamine metabolite that is produced by a consecutive action of monoamine oxidase and catechol-O-methyltransferase on dopamine. HVA is typically elevated in patients with catecholamine-secreting tumors (such as neuroblastoma, pheochromocytoma, and other neural crest tumors). HVA levels are also used in monitoring patients who have been treated for these kinds tumors. HVA levels may also be altered in disorders of catecholamine metabolism such as monoamine oxidase-A (MOA) deficiency. MOA deficiency can cause decreased urinary HVA values, while a deficiency of dopamine beta-hydrolase (the enzyme that converts dopamine to norepinephrine) can cause elevated urinary HVA values. Within humans, HVA participates in a number of enzymatic reactions. In particular, HVA and pyrocatechol can be biosynthesized from 3,4-dihydroxybenzeneacetic acid and guaiacol. This reaction is catalyzed by the enzyme known as catechol O-methyltransferase. In addition, HVA can be biosynthesized from homovanillin through the action of the enzyme known aldehyde dehydrogenase. HVA has recently been found in a number of beers and appears to arise from the fermentation process (https://doi.org/10.1006/fstl.1999.0593). HVA is also a metabolite of Bifidobacterium (PMID: 24958563 ) and the bacterial breakdown of dietary flavonoids. Dietary flavonols commonly found in tomatoes, onions, and tea, can lead to significantly elevated levels of urinary HVA (PMID: 20933512 ). Likewise, the microbial digestion of hydroxytyrosol (found in olive oil) can also lead to elevated levels of HVA in humans (PMID: 11929304 ).
Structure
Thumb
SynonymsNot Available
Chemical FormulaC9H10O4
Average Molecular Weight182.1733
Monoisotopic Molecular Weight182.057908808
IUPAC NameNot Available
Traditional NameNot Available
CAS Registry Number306-08-1
SMILESNot Available
InChI Identifier
InChI=1S/C9H10O4/c1-13-8-4-6(5-9(11)12)2-3-7(8)10/h2-4,10H,5H2,1H3,(H,11,12)
InChI KeyQRMZSPFSDQBLIX-UHFFFAOYSA-N
Chemical Taxonomy
ClassificationNot classified
Ontology
Physiological effect
Disposition
Biological locationRoute of exposureSource
Process
Role
Physical Properties
StateSolid
Experimental Molecular Properties
PropertyValueReference
Melting Point138 - 140 °CNot Available
Boiling PointNot AvailableNot Available
Water Solubility17 mg/mLNot Available
LogP0.33LAHANN,TR ET AL. (1989)
Experimental Chromatographic Properties
Predicted Molecular PropertiesNot Available
Predicted Chromatographic Properties
Spectra
Biological Properties
Cellular Locations
  • Cytoplasm
Biospecimen Locations
  • Blood
  • Cerebrospinal Fluid (CSF)
  • Feces
  • Saliva
  • Urine
Tissue Locations
  • Brain
  • Fibroblasts
  • Kidney
Pathways
Normal Concentrations
Abnormal Concentrations
Associated Disorders and Diseases
Disease References
Hypothyroidism
  1. Sjoberg S, Eriksson M, Nordin C: L-thyroxine treatment and neurotransmitter levels in the cerebrospinal fluid of hypothyroid patients: a pilot study. Eur J Endocrinol. 1998 Nov;139(5):493-7. [PubMed:9849813 ]
Narcolepsy
  1. Strittmatter M, Isenberg E, Grauer MT, Hamann G, Schimrigk K: CSF substance P somatostatin and monoaminergic transmitter metabolites in patients with narcolepsy. Neurosci Lett. 1996 Nov 1;218(2):99-102. [PubMed:8945737 ]
Growth hormone deficiency
  1. Burman P, Hetta J, Wide L, Mansson JE, Ekman R, Karlsson FA: Growth hormone treatment affects brain neurotransmitters and thyroxine [see comment]. Clin Endocrinol (Oxf). 1996 Mar;44(3):319-24. [PubMed:8729530 ]
Schizophrenia
  1. Harnryd C, Bjerkenstedt L, Grimm VE, Sedvall G: Reduction of MOPEG levels in cerebrospinal fluid of psychotic women after electroconvulsive treatment. Psychopharmacology (Berl). 1979 Aug 8;64(2):131-4. [PubMed:115032 ]
  2. Alfredsson G, Wiesel FA: Monoamine metabolites and amino acids in serum from schizophrenic patients before and during sulpiride treatment. Psychopharmacology (Berl). 1989;99(3):322-7. [PubMed:2480613 ]
  3. Do KQ, Lauer CJ, Schreiber W, Zollinger M, Gutteck-Amsler U, Cuenod M, Holsboer F: gamma-Glutamylglutamine and taurine concentrations are decreased in the cerebrospinal fluid of drug-naive patients with schizophrenic disorders. J Neurochem. 1995 Dec;65(6):2652-62. [PubMed:7595563 ]
  4. Nikisch G, Baumann P, Wiedemann G, Kiessling B, Weisser H, Hertel A, Yoshitake T, Kehr J, Mathe AA: Quetiapine and norquetiapine in plasma and cerebrospinal fluid of schizophrenic patients treated with quetiapine: correlations to clinical outcome and HVA, 5-HIAA, and MHPG in CSF. J Clin Psychopharmacol. 2010 Oct;30(5):496-503. doi: 10.1097/JCP.0b013e3181f2288e. [PubMed:20814316 ]
  5. Bjerkenstedt L, Edman G, Hagenfeldt L, Sedvall G, Wiesel FA: Plasma amino acids in relation to cerebrospinal fluid monoamine metabolites in schizophrenic patients and healthy controls. Br J Psychiatry. 1985 Sep;147:276-82. [PubMed:2415198 ]
  6. Peters JG: Dopamine, noradrenaline and serotonin spinal fluid metabolites in temporal lobe epileptic patients with schizophrenic symptomatology. Eur Neurol. 1979;18(1):15-8. [PubMed:436860 ]
Epilepsy
  1. Botez MI, Young SN: Effects of anticonvulsant treatment and low levels of folate and thiamine on amine metabolites in cerebrospinal fluid. Brain. 1991 Feb;114 ( Pt 1A):333-48. [PubMed:1705463 ]
  2. Shaywitz BA, Cohen DJ, Bowers MB: Reduced cerebrospinal fluid 5-hydroxyindoleacetic acid and homovanillic acid in children with epilepsy. Neurology. 1975 Jan;25(1):72-9. [PubMed:803305 ]
  3. Peters JG: Dopamine, noradrenaline and serotonin spinal fluid metabolites in temporal lobe epileptic patients with schizophrenic symptomatology. Eur Neurol. 1979;18(1):15-8. [PubMed:436860 ]
Panic disorder
  1. Eriksson E, Westberg P, Alling C, Thuresson K, Modigh K: Cerebrospinal fluid levels of monoamine metabolites in panic disorder. Psychiatry Res. 1991 Mar;36(3):243-51. [PubMed:1712114 ]
Olivopontocerebral atrophy
  1. Botez MI, Young SN: Biogenic amine metabolites and thiamine in cerebrospinal fluid in heredo-degenerative ataxias. Can J Neurol Sci. 2001 May;28(2):134-40. [PubMed:11383938 ]
Hereditary spastic paraplegia
  1. Botez MI, Young SN: Biogenic amine metabolites and thiamine in cerebrospinal fluid in heredo-degenerative ataxias. Can J Neurol Sci. 2001 May;28(2):134-40. [PubMed:11383938 ]
Autism
  1. Narayan M, Srinath S, Anderson GM, Meundi DB: Cerebrospinal fluid levels of homovanillic acid and 5-hydroxyindoleacetic acid in autism. Biol Psychiatry. 1993 Apr 15-May 1;33(8-9):630-5. [PubMed:7687150 ]
Parkinson's disease
  1. LeWitt PA, Galloway MP, Matson W, Milbury P, McDermott M, Srivastava DK, Oakes D: Markers of dopamine metabolism in Parkinson's disease. The Parkinson Study Group. Neurology. 1992 Nov;42(11):2111-7. [PubMed:1436520 ]
  2. Dizdar N, Kagedal B, Lindvall B: Treatment of Parkinson's disease with NADH. Acta Neurol Scand. 1994 Nov;90(5):345-7. [PubMed:7887134 ]
Friedreich's ataxia
  1. Botez MI, Young SN: Biogenic amine metabolites and thiamine in cerebrospinal fluid in heredo-degenerative ataxias. Can J Neurol Sci. 2001 May;28(2):134-40. [PubMed:11383938 ]
Major depressive disorder
  1. Sheline Y, Bardgett ME, Csernansky JG: Correlated reductions in cerebrospinal fluid 5-HIAA and MHPG concentrations after treatment with selective serotonin reuptake inhibitors. J Clin Psychopharmacol. 1997 Feb;17(1):11-4. [PubMed:9004051 ]
Aromatic L-amino acid decarboxylase deficiency
  1. Abdenur JE, Abeling N, Specola N, Jorge L, Schenone AB, van Cruchten AC, Chamoles NA: Aromatic l-aminoacid decarboxylase deficiency: unusual neonatal presentation and additional findings in organic acid analysis. Mol Genet Metab. 2006 Jan;87(1):48-53. Epub 2005 Nov 9. [PubMed:16288991 ]
  2. Abeling NG, van Gennip AH, Barth PG, van Cruchten A, Westra M, Wijburg FA: Aromatic L-amino acid decarboxylase deficiency: a new case with a mild clinical presentation and unexpected laboratory findings. J Inherit Metab Dis. 1998 Jun;21(3):240-2. [PubMed:9686366 ]
Celiac disease
  1. Hallert C, Astrom J, Sedvall G: Psychic disturbances in adult coeliac disease. III. Reduced central monoamine metabolism and signs of depression. Scand J Gastroenterol. 1982 Jan;17(1):25-8. [PubMed:6182605 ]
Sepiapterin reductase deficiency
  1. Verbeek MM, Willemsen MA, Wevers RA, Lagerwerf AJ, Abeling NG, Blau N, Thony B, Vargiami E, Zafeiriou DI: Two Greek siblings with sepiapterin reductase deficiency. Mol Genet Metab. 2008 Aug;94(4):403-9. doi: 10.1016/j.ymgme.2008.04.003. Epub 2008 May 27. [PubMed:18502672 ]
Pyridoxamine 5-prime-phosphate oxidase deficiency
  1. Ormazabal A, Oppenheim M, Serrano M, Garcia-Cazorla A, Campistol J, Ribes A, Ruiz A, Moreno J, Hyland K, Clayton P, Heales S, Artuch R: Pyridoxal 5'-phosphate values in cerebrospinal fluid: reference values and diagnosis of PNPO deficiency in paediatric patients. Mol Genet Metab. 2008 Jun;94(2):173-7. doi: 10.1016/j.ymgme.2008.01.004. Epub 2008 Feb 21. [PubMed:18294893 ]
  2. Plecko B, Paul K, Paschke E, Stoeckler-Ipsiroglu S, Struys E, Jakobs C, Hartmann H, Luecke T, di Capua M, Korenke C, Hikel C, Reutershahn E, Freilinger M, Baumeister F, Bosch F, Erwa W: Biochemical and molecular characterization of 18 patients with pyridoxine-dependent epilepsy and mutations of the antiquitin (ALDH7A1) gene. Hum Mutat. 2007 Jan;28(1):19-26. [PubMed:17068770 ]
Parkinsonian syndrome
  1. Espino A, Calopa M, Ambrosio S, Ortola J, Peres J, Navarro MA: CSF somatostatin increase in patients with early parkinsonian syndrome. J Neural Transm Park Dis Dement Sect. 1995;9(2-3):189-96. [PubMed:8527003 ]
Urocanase deficiency
  1. Espinos C, Pineda M, Martinez-Rubio D, Lupo V, Ormazabal A, Vilaseca MA, Spaapen LJ, Palau F, Artuch R: Mutations in the urocanase gene UROC1 are associated with urocanic aciduria. J Med Genet. 2009 Jun;46(6):407-11. doi: 10.1136/jmg.2008.060632. Epub 2009 Mar 19. [PubMed:19304569 ]
Eosinophilic esophagitis
  1. Slae, M., Huynh, H., Wishart, D.S. (2014). Analysis of 30 normal pediatric urine samples via NMR spectroscopy (unpublished work). NA.
Perillyl alcohol administration for cancer treatment
  1. Nam H, Chung BC, Kim Y, Lee K, Lee D: Combining tissue transcriptomics and urine metabolomics for breast cancer biomarker identification. Bioinformatics. 2009 Dec 1;25(23):3151-7. doi: 10.1093/bioinformatics/btp558. Epub 2009 Sep 25. [PubMed:19783829 ]
Phenylketonuria
  1. Rampini S, Vollmin JA, Bosshard HR, Muller M, Curtius HC: Aromatic acids in urine of healthy infants, persistent hyperphenylalaninemia, and phenylketonuria, before and after phenylalanine load. Pediatr Res. 1974 Jul;8(7):704-9. [PubMed:4837567 ]
Dopamine-serotonin Vesicular Transport Defect
  1. Rilstone JJ, Alkhater RA, Minassian BA: Brain dopamine-serotonin vesicular transport disease and its treatment. N Engl J Med. 2013 Feb 7;368(6):543-50. doi: 10.1056/NEJMoa1207281. Epub 2013 Jan 30. [PubMed:23363473 ]
Brunner Syndrome
  1. Brunner HG, Nelen MR, van Zandvoort P, Abeling NG, van Gennip AH, Wolters EC, Kuiper MA, Ropers HH, van Oost BA: X-linked borderline mental retardation with prominent behavioral disturbance: phenotype, genetic localization, and evidence for disturbed monoamine metabolism. Am J Hum Genet. 1993 Jun;52(6):1032-9. [PubMed:8503438 ]
Associated OMIM IDs
External LinksNot Available
References
Synthesis ReferenceNot Available
Material Safety Data Sheet (MSDS)Not Available
General References

Enzymes

General function:
Involved in magnesium ion binding
Specific function:
Catalyzes the O-methylation, and thereby the inactivation, of catecholamine neurotransmitters and catechol hormones. Also shortens the biological half-lives of certain neuroactive drugs, like L-DOPA, alpha-methyl DOPA and isoproterenol.
Gene Name:
COMT
Uniprot ID:
P21964
Molecular weight:
30036.77
Reactions
S-Adenosylmethionine + 3,4-Dihydroxybenzeneacetic acid → S-Adenosylhomocysteine + Homovanillic aciddetails
General function:
Involved in oxidoreductase activity
Specific function:
ALDHs play a major role in the detoxification of alcohol-derived acetaldehyde. They are involved in the metabolism of corticosteroids, biogenic amines, neurotransmitters, and lipid peroxidation. This protein preferentially oxidizes aromatic aldehyde substrates. It may play a role in the oxidation of toxic aldehydes.
Gene Name:
ALDH3A1
Uniprot ID:
P30838
Molecular weight:
50394.57
Reactions
Homovanillin + NAD + Water → Homovanillic acid + NADH + Hydrogen Iondetails
Homovanillin + NADP + Water → Homovanillic acid + NADPH + Hydrogen Iondetails
General function:
Involved in oxidoreductase activity
Specific function:
Recognizes as substrates free retinal and cellular retinol-binding protein-bound retinal. Seems to be the key enzyme in the formation of an RA gradient along the dorso-ventral axis during the early eye development and also in the development of the olfactory system (By similarity).
Gene Name:
ALDH1A3
Uniprot ID:
P47895
Molecular weight:
56107.995
Reactions
Homovanillin + NAD + Water → Homovanillic acid + NADH + Hydrogen Iondetails
Homovanillin + NADP + Water → Homovanillic acid + NADPH + Hydrogen Iondetails
General function:
Involved in oxidoreductase activity
Specific function:
Not Available
Gene Name:
ALDH3B2
Uniprot ID:
P48448
Molecular weight:
42623.62
Reactions
Homovanillin + NAD + Water → Homovanillic acid + NADH + Hydrogen Iondetails
Homovanillin + NADP + Water → Homovanillic acid + NADPH + Hydrogen Iondetails
General function:
Involved in oxidoreductase activity
Specific function:
Oxidizes medium and long chain saturated and unsaturated aldehydes. Metabolizes also benzaldehyde. Low activity towards acetaldehyde and 3,4-dihydroxyphenylacetaldehyde. May not metabolize short chain aldehydes. May use both NADP(+) and NAD(+) as cofactors. May have a protective role against the cytotoxicity induced by lipid peroxidation.
Gene Name:
ALDH3B1
Uniprot ID:
P43353
Molecular weight:
51839.245
Reactions
Homovanillin + NAD + Water → Homovanillic acid + NADH + Hydrogen Iondetails
Homovanillin + NADP + Water → Homovanillic acid + NADPH + Hydrogen Iondetails
General function:
sulfotransferase activity
Specific function:
Sulfotransferase that utilizes 3'-phospho-5'-adenylyl sulfate (PAPS) as sulfonate donor to catalyze the sulfate conjugation of phenolic monoamines (neurotransmitters such as dopamine, norepinephrine and serotonin) and phenolic and catechol drugs.
Gene Name:
SULT1A3
Uniprot ID:
P0DMM9
Molecular weight:
34195.96
Reactions
Homovanillic acid → Homovanillic acid sulfatedetails