Hmdb loader
Read more...Show more...Show more...Show more...Show more...Show more...Show more...Show more...
Record Information
Version5.0
StatusDetected and Quantified
Creation Date2005-11-16 15:48:42 UTC
Update Date2023-05-30 20:55:51 UTC
HMDB IDHMDB0000073
Secondary Accession Numbers
  • HMDB00073
  • HMDB0060277
  • HMDB60277
Metabolite Identification
Common NameDopamine
Description
Structure
Thumb
Synonyms
Chemical FormulaC8H11NO2
Average Molecular Weight153.1784
Monoisotopic Molecular Weight153.078978601
IUPAC Name4-(2-aminoethyl)benzene-1,2-diol
Traditional Namedopamine
CAS Registry Number62-31-7
SMILES
NCCC1=CC(O)=C(O)C=C1
InChI Identifier
InChI=1S/C8H11NO2/c9-4-3-6-1-2-7(10)8(11)5-6/h1-2,5,10-11H,3-4,9H2
InChI KeyVYFYYTLLBUKUHU-UHFFFAOYSA-N
Chemical Taxonomy
Description Belongs to the class of organic compounds known as catecholamines and derivatives. Catecholamines and derivatives are compounds containing 4-(2-Aminoethyl)pyrocatechol [4-(2-aminoethyl)benzene-1,2-diol] or a derivative thereof formed by substitution.
KingdomOrganic compounds
Super ClassBenzenoids
ClassPhenols
Sub ClassBenzenediols
Direct ParentCatecholamines and derivatives
Alternative Parents
Substituents
  • Catecholamine
  • Phenethylamine
  • 2-arylethylamine
  • 1-hydroxy-4-unsubstituted benzenoid
  • 1-hydroxy-2-unsubstituted benzenoid
  • Aralkylamine
  • Monocyclic benzene moiety
  • Amine
  • Hydrocarbon derivative
  • Primary amine
  • Organopnictogen compound
  • Organooxygen compound
  • Organonitrogen compound
  • Primary aliphatic amine
  • Organic oxygen compound
  • Organic nitrogen compound
  • Aromatic homomonocyclic compound
Molecular FrameworkAromatic homomonocyclic compounds
External Descriptors
Ontology
Physiological effectNot Available
Disposition
ProcessNot Available
RoleNot Available
Physical Properties
StateSolid
Experimental Molecular Properties
PropertyValueReference
Melting Point128 °CNot Available
Boiling PointNot AvailableNot Available
Water Solubility535 mg/mLNot Available
LogP-0.98HANSCH,C ET AL. (1995)
Experimental Chromatographic Properties

Experimental Collision Cross Sections

Adduct TypeData SourceCCS Value (Å2)Reference
[M-H]-Baker135.35730932474
[M-H]-MetCCS_train_neg129.51530932474
[M+H]+Baker125.23630932474
[M-H]-Not Available132.4http://allccs.zhulab.cn/database/detail?ID=AllCCS00000284
[M+H]+Not Available137.1http://allccs.zhulab.cn/database/detail?ID=AllCCS00000284
Predicted Molecular Properties
Predicted Chromatographic Properties
Spectra
Biological Properties
Cellular Locations
  • Cytoplasm
  • Extracellular
Biospecimen Locations
  • Blood
  • Cerebrospinal Fluid (CSF)
  • Feces
  • Urine
Tissue Locations
  • Adipose Tissue
  • Adrenal Cortex
  • Adrenal Gland
  • Adrenal Medulla
  • Bladder
  • Brain
  • Epidermis
  • Fibroblasts
  • Kidney
  • Neuron
  • Pancreas
  • Placenta
  • Platelet
  • Skeletal Muscle
  • Spleen
  • Testis
Pathways
Normal Concentrations
Abnormal Concentrations
Associated Disorders and Diseases
Disease References
Dopamine Beta-Hydroxylase Deficiency
  1. GeneReviews: Dopamine Beta-Hydroxylase Deficiency [Link]
Hypothyroidism
  1. Sjoberg S, Eriksson M, Nordin C: L-thyroxine treatment and neurotransmitter levels in the cerebrospinal fluid of hypothyroid patients: a pilot study. Eur J Endocrinol. 1998 Nov;139(5):493-7. [PubMed:9849813 ]
Alzheimer's disease
  1. Raskind MA, Peskind ER, Holmes C, Goldstein DS: Patterns of cerebrospinal fluid catechols support increased central noradrenergic responsiveness in aging and Alzheimer's disease. Biol Psychiatry. 1999 Sep 15;46(6):756-65. [PubMed:10494443 ]
  2. Fonteh AN, Harrington RJ, Tsai A, Liao P, Harrington MG: Free amino acid and dipeptide changes in the body fluids from Alzheimer's disease subjects. Amino Acids. 2007 Feb;32(2):213-24. Epub 2006 Oct 10. [PubMed:17031479 ]
Cerebral infarction
  1. Ratge D, Bauersfeld W, Wisser H: The relationship of free and conjugated catecholamines in plasma and cerebrospinal fluid in cerebral and meningeal disease. J Neural Transm. 1985;62(3-4):267-84. [PubMed:4031843 ]
Bacterial meningitis
  1. Ratge D, Bauersfeld W, Wisser H: The relationship of free and conjugated catecholamines in plasma and cerebrospinal fluid in cerebral and meningeal disease. J Neural Transm. 1985;62(3-4):267-84. [PubMed:4031843 ]
Encephalitis
  1. Ratge D, Bauersfeld W, Wisser H: The relationship of free and conjugated catecholamines in plasma and cerebrospinal fluid in cerebral and meningeal disease. J Neural Transm. 1985;62(3-4):267-84. [PubMed:4031843 ]
Vitiligo
  1. Cucchi ML, Frattini P, Santagostino G, Preda S, Orecchia G: Catecholamines increase in the urine of non-segmental vitiligo especially during its active phase. Pigment Cell Res. 2003 Apr;16(2):111-6. [PubMed:12622787 ]
Aromatic L-amino acid decarboxylase deficiency
  1. Abdenur JE, Abeling N, Specola N, Jorge L, Schenone AB, van Cruchten AC, Chamoles NA: Aromatic l-aminoacid decarboxylase deficiency: unusual neonatal presentation and additional findings in organic acid analysis. Mol Genet Metab. 2006 Jan;87(1):48-53. Epub 2005 Nov 9. [PubMed:16288991 ]
  2. Abeling NG, van Gennip AH, Barth PG, van Cruchten A, Westra M, Wijburg FA: Aromatic L-amino acid decarboxylase deficiency: a new case with a mild clinical presentation and unexpected laboratory findings. J Inherit Metab Dis. 1998 Jun;21(3):240-2. [PubMed:9686366 ]
Eosinophilic esophagitis
  1. Slae, M., Huynh, H., Wishart, D.S. (2014). Analysis of 30 normal pediatric urine samples via NMR spectroscopy (unpublished work). NA.
Schizophrenia
  1. Fryar-Williams S, Strobel JE: Biomarkers of a five-domain translational substrate for schizophrenia and schizoaffective psychosis. Biomark Res. 2015 Feb 6;3:3. doi: 10.1186/s40364-015-0028-1. eCollection 2015. [PubMed:25729574 ]
Dopamine-serotonin Vesicular Transport Defect
  1. Rilstone JJ, Alkhater RA, Minassian BA: Brain dopamine-serotonin vesicular transport disease and its treatment. N Engl J Med. 2013 Feb 7;368(6):543-50. doi: 10.1056/NEJMoa1207281. Epub 2013 Jan 30. [PubMed:23363473 ]
Associated OMIM IDs
DrugBank IDDB00988
Phenol Explorer Compound IDNot Available
FooDB IDFDB012163
KNApSAcK IDC00001408
Chemspider ID661
KEGG Compound IDC03758
BioCyc IDDOPAMINE
BiGG ID42467
Wikipedia LinkDopamine
METLIN ID64
PubChem Compound681
PDB IDNot Available
ChEBI ID18243
Food Biomarker OntologyNot Available
VMH IDDOPA
MarkerDB IDMDB00000039
Good Scents IDNot Available
References
Synthesis ReferenceKlaus Schoellkopf, Rudolf Albrecht, Manfred Lehmann, Gertrud Schroeder, "Novel dopamine derivatives, processes for their preparation, and their use as medicinal agents." U.S. Patent US4958026, issued February, 1972.
Material Safety Data Sheet (MSDS)Not Available
General References

Only showing the first 10 proteins. There are 28 proteins in total.

Enzymes

General function:
Involved in oxidoreductase activity
Specific function:
This is a copper-containing oxidase that functions in the formation of pigments such as melanins and other polyphenolic compounds. Catalyzes the rate-limiting conversions of tyrosine to DOPA, DOPA to DOPA-quinone and possibly 5,6-dihydroxyindole to indole-5,6 quinone.
Gene Name:
TYR
Uniprot ID:
P14679
Molecular weight:
60392.69
Reactions
Tyramine + Oxygen + NADH + Hydrogen Ion → Dopamine + NAD + Waterdetails
General function:
Involved in oxidoreductase activity
Specific function:
Catalyzes the oxidative deamination of biogenic and xenobiotic amines and has important functions in the metabolism of neuroactive and vasoactive amines in the central nervous system and peripheral tissues. MAOB preferentially degrades benzylamine and phenylethylamine.
Gene Name:
MAOB
Uniprot ID:
P27338
Molecular weight:
58762.475
Reactions
Dopamine + Water + Oxygen → 3,4-Dihydroxyphenylacetaldehyde + Ammonia + Hydrogen peroxidedetails
References
  1. Bortolato M, Chen K, Shih JC: Monoamine oxidase inactivation: from pathophysiology to therapeutics. Adv Drug Deliv Rev. 2008 Oct-Nov;60(13-14):1527-33. doi: 10.1016/j.addr.2008.06.002. Epub 2008 Jul 4. [PubMed:18652859 ]
  2. Kaludercic N, Carpi A, Menabo R, Di Lisa F, Paolocci N: Monoamine oxidases (MAO) in the pathogenesis of heart failure and ischemia/reperfusion injury. Biochim Biophys Acta. 2011 Jul;1813(7):1323-32. doi: 10.1016/j.bbamcr.2010.09.010. Epub 2010 Sep 24. [PubMed:20869994 ]
General function:
Involved in oxidoreductase activity
Specific function:
Catalyzes the oxidative deamination of biogenic and xenobiotic amines and has important functions in the metabolism of neuroactive and vasoactive amines in the central nervous system and peripheral tissues. MAOA preferentially oxidizes biogenic amines such as 5-hydroxytryptamine (5-HT), norepinephrine and epinephrine.
Gene Name:
MAOA
Uniprot ID:
P21397
Molecular weight:
59681.27
Reactions
Dopamine + Water + Oxygen → 3,4-Dihydroxyphenylacetaldehyde + Ammonia + Hydrogen peroxidedetails
References
  1. Bortolato M, Chen K, Shih JC: Monoamine oxidase inactivation: from pathophysiology to therapeutics. Adv Drug Deliv Rev. 2008 Oct-Nov;60(13-14):1527-33. doi: 10.1016/j.addr.2008.06.002. Epub 2008 Jul 4. [PubMed:18652859 ]
  2. Kaludercic N, Carpi A, Menabo R, Di Lisa F, Paolocci N: Monoamine oxidases (MAO) in the pathogenesis of heart failure and ischemia/reperfusion injury. Biochim Biophys Acta. 2011 Jul;1813(7):1323-32. doi: 10.1016/j.bbamcr.2010.09.010. Epub 2010 Sep 24. [PubMed:20869994 ]
  3. Volavka J, Bilder R, Nolan K: Catecholamines and aggression: the role of COMT and MAO polymorphisms. Ann N Y Acad Sci. 2004 Dec;1036:393-8. [PubMed:15817751 ]
General function:
Involved in monooxygenase activity
Specific function:
Conversion of dopamine to noradrenaline.
Gene Name:
DBH
Uniprot ID:
P09172
Molecular weight:
69064.45
Reactions
Dopamine + Ascorbic acid + Oxygen → Norepinephrine + Dehydroascorbic acid + Waterdetails
Dopamine + Ascorbic acid + Oxygen → Norepinephrine + Dehydroascorbic acid + Waterdetails
References
  1. Goldman JM, Cooper RL, Murr AS: Reproductive functions and hypothalamic catecholamines in response to the soil fumigant metam sodium: adaptations to extended exposures. Neurotoxicol Teratol. 2007 May-Jun;29(3):368-76. Epub 2006 Dec 6. [PubMed:17258889 ]
  2. Arboleda G, Huang TJ, Waters C, Verkhratsky A, Fernyhough P, Gibson RM: Insulin-like growth factor-1-dependent maintenance of neuronal metabolism through the phosphatidylinositol 3-kinase-Akt pathway is inhibited by C2-ceramide in CAD cells. Eur J Neurosci. 2007 May;25(10):3030-8. [PubMed:17561816 ]
  3. Garland EM, Black BK, Harris PA, Robertson D: Dopamine-beta-hydroxylase in postural tachycardia syndrome. Am J Physiol Heart Circ Physiol. 2007 Jul;293(1):H684-90. [PubMed:17625104 ]
  4. Pyatskowit JW, Prohaska JR: Rodent brain and heart catecholamine levels are altered by different models of copper deficiency. Comp Biochem Physiol C Toxicol Pharmacol. 2007 Mar;145(2):275-81. Epub 2007 Jan 12. [PubMed:17287146 ]
  5. LeBlanc J, Ducharme MB: Plasma dopamine and noradrenaline variations in response to stress. Physiol Behav. 2007 Jun 8;91(2-3):208-11. Epub 2007 Mar 2. [PubMed:17433386 ]
General function:
Involved in magnesium ion binding
Specific function:
Catalyzes the O-methylation, and thereby the inactivation, of catecholamine neurotransmitters and catechol hormones. Also shortens the biological half-lives of certain neuroactive drugs, like L-DOPA, alpha-methyl DOPA and isoproterenol.
Gene Name:
COMT
Uniprot ID:
P21964
Molecular weight:
30036.77
Reactions
S-Adenosylmethionine + Dopamine → S-Adenosylhomocysteine + 3-Methoxytyraminedetails
References
  1. Ittiwut R, Listman JB, Ittiwut C, Cubells JF, Weiss RD, Brady K, Oslin D, Farrer LA, Kranzler HR, Gelernter J: Association between polymorphisms in catechol-O-methyltransferase (COMT) and cocaine-induced paranoia in European-American and African-American populations. Am J Med Genet B Neuropsychiatr Genet. 2011 Sep;156B(6):651-60. doi: 10.1002/ajmg.b.31205. Epub 2011 Jun 8. [PubMed:21656904 ]
  2. Boot E, Booij J, Abeling N, Meijer J, da Silva Alves F, Zinkstok J, Baas F, Linszen D, van Amelsvoort T: Dopamine metabolism in adults with 22q11 deletion syndrome, with and without schizophrenia--relationship with COMT Val(1)(0)(8)/(1)(5)(8)Met polymorphism, gender and symptomatology. J Psychopharmacol. 2011 Jul;25(7):888-95. doi: 10.1177/0269881111400644. Epub 2011 Mar 29. [PubMed:21447540 ]
  3. Volavka J, Bilder R, Nolan K: Catecholamines and aggression: the role of COMT and MAO polymorphisms. Ann N Y Acad Sci. 2004 Dec;1036:393-8. [PubMed:15817751 ]
General function:
Involved in carboxy-lyase activity
Specific function:
Catalyzes the decarboxylation of L-3,4-dihydroxyphenylalanine (DOPA) to dopamine, L-5-hydroxytryptophan to serotonin and L-tryptophan to tryptamine.
Gene Name:
DDC
Uniprot ID:
P20711
Molecular weight:
53893.755
Reactions
DOPA → Dopamine + CO(2)details
DOPA → Dopamine + Carbon dioxidedetails
General function:
Involved in copper ion binding
Specific function:
Catalyzes the degradation of compounds such as putrescine, histamine, spermine, and spermidine, substances involved in allergic and immune responses, cell proliferation, tissue differentiation, tumor formation, and possibly apoptosis. Placental DAO is thought to play a role in the regulation of the female reproductive function.
Gene Name:
ABP1
Uniprot ID:
P19801
Molecular weight:
85377.1
General function:
Involved in copper ion binding
Specific function:
Cell adhesion protein that participates in lymphocyte recirculation by mediating the binding of lymphocytes to peripheral lymph node vascular endothelial cells in an L-selectin-independent fashion. Has a monoamine oxidase activity. May play a role in adipogenesis.
Gene Name:
AOC3
Uniprot ID:
Q16853
Molecular weight:
84621.27
Reactions
Dopamine + Water + Oxygen → 3,4-Dihydroxyphenylacetaldehyde + Ammonia + Hydrogen peroxidedetails
General function:
Involved in copper ion binding
Specific function:
Has a monoamine oxidase activity with substrate specificity for 2-phenylethylamine and tryptamine. May play a role in adipogenesis. May be a critical modulator of signal transmission in retina.
Gene Name:
AOC2
Uniprot ID:
O75106
Molecular weight:
80515.11
Reactions
Dopamine + Water + Oxygen → 3,4-Dihydroxyphenylacetaldehyde + Ammonia + Hydrogen peroxidedetails
General function:
Involved in monooxygenase activity
Specific function:
Cytochromes P450 are a group of heme-thiolate monooxygenases. In liver microsomes, this enzyme is involved in an NADPH-dependent electron transport pathway. It oxidizes a variety of structurally unrelated compounds, including steroids, fatty acids, and xenobiotics. This enzyme contributes to the wide pharmacokinetics variability of the metabolism of drugs such as S-warfarin, diclofenac, phenytoin, tolbutamide and losartan.
Gene Name:
CYP2C9
Uniprot ID:
P11712
Molecular weight:
55627.365
References
  1. Preissner S, Kroll K, Dunkel M, Senger C, Goldsobel G, Kuzman D, Guenther S, Winnenburg R, Schroeder M, Preissner R: SuperCYP: a comprehensive database on Cytochrome P450 enzymes including a tool for analysis of CYP-drug interactions. Nucleic Acids Res. 2010 Jan;38(Database issue):D237-43. doi: 10.1093/nar/gkp970. Epub 2009 Nov 24. [PubMed:19934256 ]

Transporters

General function:
Involved in ion transmembrane transporter activity
Specific function:
Sodium-ion dependent, high affinity carnitine transporter. Involved in the active cellular uptake of carnitine. Transports one sodium ion with one molecule of carnitine. Also transports organic cations such as tetraethylammonium (TEA) without the involvement of sodium. Also relative uptake activity ratio of carnitine to TEA is 11.3
Gene Name:
SLC22A5
Uniprot ID:
O76082
Molecular weight:
62751.1
References
  1. Ohashi R, Tamai I, Nezu Ji J, Nikaido H, Hashimoto N, Oku A, Sai Y, Shimane M, Tsuji A: Molecular and physiological evidence for multifunctionality of carnitine/organic cation transporter OCTN2. Mol Pharmacol. 2001 Feb;59(2):358-66. [PubMed:11160873 ]
  2. Wu X, Huang W, Prasad PD, Seth P, Rajan DP, Leibach FH, Chen J, Conway SJ, Ganapathy V: Functional characteristics and tissue distribution pattern of organic cation transporter 2 (OCTN2), an organic cation/carnitine transporter. J Pharmacol Exp Ther. 1999 Sep;290(3):1482-92. [PubMed:10454528 ]
General function:
Involved in ion transmembrane transporter activity
Specific function:
Translocates a broad array of organic cations with various structures and molecular weights including the model compounds 1-methyl-4-phenylpyridinium (MPP), tetraethylammonium (TEA), N-1-methylnicotinamide (NMN), 4-(4-(dimethylamino)styryl)- N-methylpyridinium (ASP), the endogenous compounds choline, guanidine, histamine, epinephrine, adrenaline, noradrenaline and dopamine, and the drugs quinine, and metformin. The transport of organic cations is inhibited by a broad array of compounds like tetramethylammonium (TMA), cocaine, lidocaine, NMDA receptor antagonists, atropine, prazosin, cimetidine, TEA and NMN, guanidine, cimetidine, choline, procainamide, quinine, tetrabutylammonium, and tetrapentylammonium. Translocates organic cations in an electrogenic and pH-independent manner. Translocates organic cations across the plasma membrane in both directions. Transports the polyamines spermine and spermidine. Transports pramipexole across the basolateral membrane of the proximal tubular epithelial cells. The choline transport is activated by MMTS. Regulated by various intracellular signaling pathways including inhibition by protein kinase A activation, and endogenously activation by the calmodulin complex, the calmodulin- dependent kinase II and LCK tyrosine kinase
Gene Name:
SLC22A1
Uniprot ID:
O15245
Molecular weight:
61187.4
References
  1. Bednarczyk D, Ekins S, Wikel JH, Wright SH: Influence of molecular structure on substrate binding to the human organic cation transporter, hOCT1. Mol Pharmacol. 2003 Mar;63(3):489-98. [PubMed:12606755 ]
  2. Zhang L, Schaner ME, Giacomini KM: Functional characterization of an organic cation transporter (hOCT1) in a transiently transfected human cell line (HeLa). J Pharmacol Exp Ther. 1998 Jul;286(1):354-61. [PubMed:9655880 ]
  3. Urakami Y, Okuda M, Masuda S, Akazawa M, Saito H, Inui K: Distinct characteristics of organic cation transporters, OCT1 and OCT2, in the basolateral membrane of renal tubules. Pharm Res. 2001 Nov;18(11):1528-34. [PubMed:11758759 ]
  4. Busch AE, Quester S, Ulzheimer JC, Gorboulev V, Akhoundova A, Waldegger S, Lang F, Koepsell H: Monoamine neurotransmitter transport mediated by the polyspecific cation transporter rOCT1. FEBS Lett. 1996 Oct 21;395(2-3):153-6. [PubMed:8898084 ]
  5. Breidert T, Spitzenberger F, Grundemann D, Schomig E: Catecholamine transport by the organic cation transporter type 1 (OCT1). Br J Pharmacol. 1998 Sep;125(1):218-24. [PubMed:9776363 ]
General function:
Involved in ion transmembrane transporter activity
Specific function:
Mediates tubular uptake of organic compounds from circulation. Mediates the influx of agmatine, dopamine, noradrenaline (norepinephrine), serotonin, choline, famotidine, ranitidine, histamin, creatinine, amantadine, memantine, acriflavine, 4-[4-(dimethylamino)-styryl]-N-methylpyridinium ASP, amiloride, metformin, N-1-methylnicotinamide (NMN), tetraethylammonium (TEA), 1-methyl-4-phenylpyridinium (MPP), cimetidine, cisplatin and oxaliplatin. Cisplatin may develop a nephrotoxic action. Transport of creatinine is inhibited by fluoroquinolones such as DX-619 and LVFX. This transporter is a major determinant of the anticancer activity of oxaliplatin and may contribute to antitumor specificity
Gene Name:
SLC22A2
Uniprot ID:
O15244
Molecular weight:
62564.0
References
  1. Urakami Y, Akazawa M, Saito H, Okuda M, Inui K: cDNA cloning, functional characterization, and tissue distribution of an alternatively spliced variant of organic cation transporter hOCT2 predominantly expressed in the human kidney. J Am Soc Nephrol. 2002 Jul;13(7):1703-10. [PubMed:12089365 ]
  2. Wu X, Kekuda R, Huang W, Fei YJ, Leibach FH, Chen J, Conway SJ, Ganapathy V: Identity of the organic cation transporter OCT3 as the extraneuronal monoamine transporter (uptake2) and evidence for the expression of the transporter in the brain. J Biol Chem. 1998 Dec 4;273(49):32776-86. [PubMed:9830022 ]
  3. Urakami Y, Okuda M, Masuda S, Akazawa M, Saito H, Inui K: Distinct characteristics of organic cation transporters, OCT1 and OCT2, in the basolateral membrane of renal tubules. Pharm Res. 2001 Nov;18(11):1528-34. [PubMed:11758759 ]
  4. Busch AE, Karbach U, Miska D, Gorboulev V, Akhoundova A, Volk C, Arndt P, Ulzheimer JC, Sonders MS, Baumann C, Waldegger S, Lang F, Koepsell H: Human neurons express the polyspecific cation transporter hOCT2, which translocates monoamine neurotransmitters, amantadine, and memantine. Mol Pharmacol. 1998 Aug;54(2):342-52. [PubMed:9687576 ]
  5. Grundemann D, Koster S, Kiefer N, Breidert T, Engelhardt M, Spitzenberger F, Obermuller N, Schomig E: Transport of monoamine transmitters by the organic cation transporter type 2, OCT2. J Biol Chem. 1998 Nov 20;273(47):30915-20. [PubMed:9812985 ]
  6. Verhaagh S, Schweifer N, Barlow DP, Zwart R: Cloning of the mouse and human solute carrier 22a3 (Slc22a3/SLC22A3) identifies a conserved cluster of three organic cation transporters on mouse chromosome 17 and human 6q26-q27. Genomics. 1999 Jan 15;55(2):209-18. [PubMed:9933568 ]
General function:
Involved in transmembrane transport
Specific function:
Mediates potential-dependent transport of a variety of organic cations. May play a significant role in the disposition of cationic neurotoxins and neurotransmitters in the brain
Gene Name:
SLC22A3
Uniprot ID:
O75751
Molecular weight:
61279.5
References
  1. Wu X, Kekuda R, Huang W, Fei YJ, Leibach FH, Chen J, Conway SJ, Ganapathy V: Identity of the organic cation transporter OCT3 as the extraneuronal monoamine transporter (uptake2) and evidence for the expression of the transporter in the brain. J Biol Chem. 1998 Dec 4;273(49):32776-86. [PubMed:9830022 ]

Only showing the first 10 proteins. There are 28 proteins in total.