Skip to main content

CARO – The Common Anatomy Reference Ontology

  • Chapter
Anatomy Ontologies for Bioinformatics

Summary

The Common Anatomy Reference Ontology (CARO) is being developed to facilitate interoperability between existing anatomy ontologies for different species, and will provide a template for building new anatomy ontologies. CARO has a structural axis of classification based on the top-level nodes of the Foundational Model of Anatomy. CARO will complement the developmental process sub-ontology of the GO Biological Process ontology, using the latter to ensure the coherent treatment of developmental stages, and to provide a common framework for the model organism communities to classify developmental structures. Definitions for the types and relationships are being generated by a consortium of investigators from diverse backgrounds to ensure applicability to all organisms. CARO will support the coordination of cross-species ontologies at all levels of anatomical granularity by crossreferencing types within the cell type ontology (CL) and the Gene Ontology (GO) Cellular Component ontology. A complete cross-species CARO could be utilized by other ontologies for cross-product generation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. C. Berger, J. Urban, and G.M. Technau. Stage-specific inductive signals in the Drosophila neuroectoderm control the temporal sequence of neuroblast specification. Development, 128: 3243-3251, 2001.

    Google Scholar 

  2. J.A. Campos-Ortega and V. Hartenstein. TheEmbryonic Development of Drosophila melanogaster. (SecondEdition), Springer-Verlag, Berlin, 1999.

    Google Scholar 

  3. D.L. Cook, J.L.V. Mejino, and C. Rosse. Evolution of a foundational model of physiology: symbolic representation for functional bioinformatics.Medinfo, 11(1): 336-340, 2004.

    Google Scholar 

  4. D.H. Erwin and E.H. Davidson. The last common bilaterian ancestor. Development, 129:3021-3032, 2002.

    Google Scholar 

  5. Gene Ontology Consortium. The Gene Ontology (GO) project in 2006. Nucleic Acids Res., 34: D322-6, 2006.

    Google Scholar 

  6. P.W.H. Holland. Major transitions in animal evolution: a developmental genetic perspective. American Zoologist, 38(6): 829-842,1998.

    MathSciNet  Google Scholar 

  7. M. Jollie. Chordate Morphology. New York, Reinhold Books, 1962.

    Google Scholar 

  8. C.B. Kimmel, W.W. Ballard, S.R. Kimmel, B. Ullmann, and T.F. Schilling. Stages of embryonic development of the zebrafish.Dev. Dyn., 203: 253-310, 1995.

    Google Scholar 

  9. C. Mungall. Obol: integrating language and meaning in bio-ontologies. Comparative and Functional Genomics, 5 (6-7), 509-520, 2004.

    Article  Google Scholar 

  10. P.D. Nieuwkoop and J. Faber. Normal Table of Xenopus laevis. 3rd Ed, 1994.

    Google Scholar 

  11. C. Rosse and J.L.V. Mejino. A reference ontology for bioinformatics: The Foundational Model of Anatomy. Journal of BiomedicalInformatics, 36: 478-500, 2003.

    Google Scholar 

  12. C. Rosse, J.L.V. Mejino, B.R. Modayur, R. Jakobovits, K.P. Hinshaw, J.F. Brinkley. Motivation and organizational principles for anatomicalknowledge representation: the Digital Anatomist symbolic knowledgebase. Journal of the American Medical InformaticsAssociation, 5(1): 17-40, 1998.

    Google Scholar 

  13. H. P. Schultze and M. Arsenault. The panderichthyid fish Elpistostege: A close relative of tetrapods? Paleontology, 28: 293-309, 1985.

    Google Scholar 

  14. M.A. Selleck and C.D. Stern. Fate mapping and cell lineage analysis of Hensen’s node in the chick embryo. Development, 112(2): 615-626, 1991.

    Google Scholar 

  15. J. Slack. From egg to Embryo (2nd Ed). Cambridge University Press, 1991.

    Google Scholar 

  16. B. Smith. Fiat objects. Topoi, 20(2): 131-148, 2001.

    Article  Google Scholar 

  17. B. Smith, W. Ceusters, B. Klagges, J. KÖhler, A. Kumar, J. Lomax, C. Mungall, F. Neuhaus, A. Rector, and C. Rosse.Relations in biomedical ontologies. Genome Biology,6(5):r46, 2005.

    Article  Google Scholar 

  18. B. Smith, W. Ceusters, and C. Rosse. On carcinomas and other pathological entities. Comparative and FunctionalGenomics, vol 6, 7-8, 379-387, 2005.

    Article  Google Scholar 

Download references

Authors

Editor information

Albert Burger BSc, MSc, PhD Duncan Davidson BSc, PhD Richard Baldock BSc, PhD

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Albert Burger, Duncan Davidson, Richard Baldock

About this chapter

Cite this chapter

Haendel, M.A. et al. (2008). CARO – The Common Anatomy Reference Ontology. In: Burger, A., Davidson, D., Baldock, R. (eds) Anatomy Ontologies for Bioinformatics. Computational Biology, vol 6. Springer, London. https://doi.org/10.1007/978-1-84628-885-2_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-84628-885-2_16

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-84628-884-5

  • Online ISBN: 978-1-84628-885-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics