All download files including the archive files are now in a publicly accessible Google Storage Bucket. Downloads page links have been updated.

Not found

Our G-nome assistant hasn't been able to find this symbol report. Please check the URL or use our search to find what you are looking for.

Symbol report for CES4A

HGNC data for CES4A

Approved symbol
CES4A
Approved name

carboxylesterase 4A

Locus type
gene with protein product
HGNC ID
HGNC:26741
Symbol status
Approved
Previous symbols
CES8
Previous names
carboxylesterase 8 (putative)
Alias symbols
FLJ37464
Chromosomal location
16q22.1
Gene groups
INSDC
AK094783 Curated
CCDS
CCDS42174 Curated
CCDS54024 Curated
CCDS54025 Curated
CCDS92173 Curated
Bos taurus
CES4A VGNC:27231 VGNC
Felis catus
CES4A VGNC:60797 VGNC
Mus musculus
Ces4a MGI:2384581 Curated
Rattus norvegicus
Ces4a RGD:1307418
Recommended nomenclature for five mammalian carboxylesterase gene families: human, mouse, and rat genes and proteins.
Holmes RS et al. Mamm Genome 2010 Oct;21(9-10)427-441
Holmes RS, Wright MW, Laulederkind SJ, Cox LA, Hosokawa M, Imai T, Ishibashi S, Lehner R, Miyazaki M, Perkins EJ, Potter PM, Redinbo MR, Robert J, Satoh T, Yamashita T, Yan B, Yokoi T, Zechner R, Maltais LJ.
Mamm Genome 2010 Oct;21(9-10)427-441
Abstract: Mammalian carboxylesterase (CES or Ces) genes encode enzymes that participate in xenobiotic, drug, and lipid metabolism in the body and are members of at least five gene families. Tandem duplications have added more genes for some families, particularly for mouse and rat genomes, which has caused confusion in naming rodent Ces genes. This article describes a new nomenclature system for human, mouse, and rat carboxylesterase genes that identifies homolog gene families and allocates a unique name for each gene. The guidelines of human, mouse, and rat gene nomenclature committees were followed and "CES" (human) and "Ces" (mouse and rat) root symbols were used followed by the family number (e.g., human CES1). Where multiple genes were identified for a family or where a clash occurred with an existing gene name, a letter was added (e.g., human CES4A; mouse and rat Ces1a) that reflected gene relatedness among rodent species (e.g., mouse and rat Ces1a). Pseudogenes were named by adding "P" and a number to the human gene name (e.g., human CES1P1) or by using a new letter followed by ps for mouse and rat Ces pseudogenes (e.g., Ces2d-ps). Gene transcript isoforms were named by adding the GenBank accession ID to the gene symbol (e.g., human CES1_AB119995 or mouse Ces1e_BC019208). This nomenclature improves our understanding of human, mouse, and rat CES/Ces gene families and facilitates research into the structure, function, and evolution of these gene families. It also serves as a model for naming CES genes from other mammalian species.
Genomic structure and transcriptional regulation of the rat, mouse, and human carboxylesterase genes.
Hosokawa M et al. Drug Metab Rev 2007 ;39(1)1-15
Hosokawa M, Furihata T, Yaginuma Y, Yamamoto N, Koyano N, Fujii A, Nagahara Y, Satoh T, Chiba K.
Drug Metab Rev 2007 ;39(1)1-15
Abstract: The mammalian carboxylesterases (CESs) comprise a multigene family which gene products play important roles in biotransformation of ester- or amide-type prodrugs. Since expression level of CESs may affect the pharmacokinetic behavior of prodrugs in vivo, it is important to understand the transcriptional regulation mechanism of the CES genes. However, little is known about the gene structure and transcriptional regulation of the mammalian CES genes. In the present study, to investigate the transcriptional regulation of the promoter region of the CES1 and CES2 genes were isolated from mouse, rat and human genomic DNA by PCR amplification. A TATA box was not found the transcriptional start site of all CES promoter. These CES promoters share several common binding sites for transcription factors among the same CES families, suggesting that the orthologous CES genes have evolutionally conserved transcriptional regulatory mechanisms. The result of present study suggested that the mammalian CES promoters were at least partly conserved among the same CES families, and some of the transcription factors may play similar roles in transcriptional regulation of the human and murine CES genes.
The secreted protein discovery initiative (SPDI), a large-scale effort to identify novel human secreted and transmembrane proteins: a bioinformatics assessment.
Clark HF et al. Genome Res 2003 Oct;13(10)2265-2270
Clark HF, Gurney AL, Abaya E, Baker K, Baldwin D, Brush J, Chen J, Chow B, Chui C, Crowley C, Currell B, Deuel B, Dowd P, Eaton D, Foster J, Grimaldi C, Gu Q, Hass PE, Heldens S, Huang A, Kim HS, Klimowski L, Jin Y, Johnson S, Lee J, Lewis L, Liao D, Mark M, Robbie E, Sanchez C, Schoenfeld J, Seshagiri S, Simmons L, Singh J, Smith V, Stinson J, Vagts A, Vandlen R, Watanabe C, Wieand D, Woods K, Xie MH, Yansura D, Yi S, Yu G, Yuan J, Zhang M, Zhang Z, Goddard A, Wood WI, Godowski P, Gray A.
Genome Res 2003 Oct;13(10)2265-2270
Abstract: A large-scale effort, termed the Secreted Protein Discovery Initiative (SPDI), was undertaken to identify novel secreted and transmembrane proteins. In the first of several approaches, a biological signal sequence trap in yeast cells was utilized to identify cDNA clones encoding putative secreted proteins. A second strategy utilized various algorithms that recognize features such as the hydrophobic properties of signal sequences to identify putative proteins encoded by expressed sequence tags (ESTs) from human cDNA libraries. A third approach surveyed ESTs for protein sequence similarity to a set of known receptors and their ligands with the BLAST algorithm. Finally, both signal-sequence prediction algorithms and BLAST were used to identify single exons of potential genes from within human genomic sequence. The isolation of full-length cDNA clones for each of these candidate genes resulted in the identification of >1000 novel proteins. A total of 256 of these cDNAs are still novel, including variants and novel genes, per the most recent GenBank release version. The success of this large-scale effort was assessed by a bioinformatics analysis of the proteins through predictions of protein domains, subcellular localizations, and possible functional roles. The SPDI collection should facilitate efforts to better understand intercellular communication, may lead to new understandings of human diseases, and provides potential opportunities for the development of therapeutics.