|
call loadScript javascripts\jsmol\core\package.js call loadScript javascripts\jsmol\core\core.z.js -- required by ClazzNode call loadScript javascripts\jsmol\J\awtjs2d\WebOutputChannel.js
|
Vemurafenib (INN), sold under the brand name Zelboraf, is a medication used for the treatment of late-stage melanoma. It is an inhibitor of the B-Raf enzyme and was developed by Plexxikon. |
Read full article at Wikipedia
|
InChI=1S/C23H18ClF2N3O3S/c1-2-9-33(31,32)29-19-8-7-18(25)20(21(19)26)22(30)17-12-28-23-16(17)10-14(11-27-23)13-3-5-15(24)6-4-13/h3-8,10-12,29H,2,9H2,1H3,(H,27,28) |
GPXBXXGIAQBQNI-UHFFFAOYSA-N |
CCCS(=O)(=O)NC1=CC=C(F)C(C(=O)C2=CNC3=C2C=C(C=N3)C2=CC=C(Cl)C=C2)=C1F |
|
B-Raf inhibitor
A serine/threonine kinase inhibitor that specifically inhibits human mutant serine/threonine kinase (B-Raf)
|
|
antineoplastic agent
A substance that inhibits or prevents the proliferation of neoplasms.
|
|
View more via ChEBI Ontology
N-(3-{[5-(4-chlorophenyl)-1H-pyrrolo[2,3-b]pyridin-3-yl]carbonyl}-2,4-difluorophenyl)propane-1-sulfonamide
|
vemurafenib
|
WHO MedNet
|
vemurafenib
|
WHO MedNet
|
vémurafénib
|
WHO MedNet
|
vemurafenibum
|
WHO MedNet
|
PLX 4032
|
ChEBI
|
PLX-4032
|
DrugBank
|
PLX4032
|
DrugBank
|
RG 7204
|
ChEBI
|
RG-7204
|
DrugBank
|
RG7204
|
DrugBank
|
Ro 51-85426
|
DrugCentral
|
RO 5185426
|
DrugCentral
|
RO-51-85426
|
DrugBank
|
RO-5185426
|
DrugBank
|
RO5185426
|
DrugBank
|
12833468
|
Reaxys Registry Number
|
Reaxys
|
918504-65-1
|
CAS Registry Number
|
ChemIDplus
|
Dugauquier A, Awada AH, Motulsky E, Kisma N (2024) INTRAVITREAL METHOTREXATE IN VEMURAFENIB-INDUCED UVEITIS. Retinal cases & brief reports 18, 455-458 [PubMed:36977328] [show Abstract]
PurposeVemurafenib, a BRAF inhibitor, has revolutionized the prognosis of late-stage melanoma patients, rising at the same time concerns about its potential adverse effects. Here is a case of vemurafenib-induced uveitis, peculiar in both its presentation and management.MethodsCase report, diagnostic, and therapeutic challenge.ResultsUveitis is a known side effect of vemurafenib. It is generally bilateral, moderate, manageable with topical steroids, and does not require cancer therapy cessation. We present a patient who suffered from a unilateral, severe uveitis after vemurafenib treatment that fully recovered thanks to intravitreal methotrexate injections because conventional corticosteroid therapy was contraindicated.ConclusionUveitis can be a serious ocular adverse effect of vemurafenib, whereas its risk factors and mechanisms remain unknown. As BRAF inhibitors are now used on a regular basis, it is important for clinicians to be aware of this potentially sight-threatening side effect. Intravitreal methotrexate injections may be considered as an effective treatment choice in severe targeted agents-induced uveitis. | Pérez CN, Falcón CR, Mons JD, Orlandi FC, Sangiacomo M, Fernandez-Muñoz JM, Guerrero M, Benito PG, Colombo MI, Zoppino FCM, Alvarez SE (2023) Melanoma cells with acquired resistance to vemurafenib have decreased autophagic flux and display enhanced ability to transfer resistance. Biochimica et biophysica acta. Molecular basis of disease 1869, 166801 [PubMed:37419396] [show Abstract] Over the last years, the incidence of melanoma, the deadliest form of skin cancer, has risen significantly. Nearly half of the melanoma patients exhibit the BRAFV600E mutation. Although the use of BRAF and MEK inhibitors (BRAFi and MEKi) showed an impressive success rate in melanoma patients, durability of response remains an issue because tumor quickly becomes resistant. Here, we generated and characterized Lu1205 and A375 melanoma cells resistant to vemurafenib (BRAFi). Resistant cells (Lu1205R and A375R) exhibit higher IC50 (5-6 fold increase) and phospho-ERK levels and 2-3 times reduced apoptosis than their sensitive parents (Lu1205S and A375S). Moreover, resistant cells are 2-3 times bigger, display a more elongated morphology and have a modulation of migration capacity. Interestingly, pharmacological inhibition of sphingosine kinases, that prevents sphingosine-1-phosphate production, reduces migration of Lu1205R cells by 50 %. In addition, although Lu1205R cells showed increased basal levels of the autophagy markers LC3II and p62, they have decreased autophagosome degradation and autophagy flux. Remarkably, expression of Rab27A and Rab27B, which are involved in the release of extracellular vesicles are dramatically augmented in resistant cells (i.e. 5-7 fold increase). Indeed, conditioned media obtained from Lu1205R cells increased the resistance to vemurafenib of sensitive cells. Hence, these results support that resistance to vemurafenib modulates migration and the autophagic flux and may be transferred to nearby sensitive melanoma cells by factors that are released to the extracellular milieu by resistant cells. | Car I, Dittmann A, Klobučar M, Grbčić P, Kraljević Pavelić S, Sedić M (2023) Secretome Screening of BRAFV600E-Mutated Colon Cancer Cells Resistant to Vemurafenib. Biology 12, 608 [PubMed:37106808] [show Abstract] Patients with metastatic colorectal cancer (mCRC) carrying BRAFV600E mutation have worse response to chemotherapy and poor prognosis. The BRAFV600E inhibitor vemurafenib has shown modest efficacy as monotherapy in BRAF-mutated mCRC due to the development of resistance. The aim of this study was to conduct a comparative proteomics profiling of the secretome from vemurafenib-sensitive vs. -resistant colon cancer cells harboring BRAFV600E mutation in order to identify specific secretory features potentially associated with changes in the resistant cells' phenotype. Towards this aim, we employed two complementary proteomics approaches including two-dimensional gel electrophoresis coupled with MALDI-TOF/TOF mass spectrometry and label-free quantitative LC-MS/MS analysis. Obtained results pointed to aberrant regulation of DNA replication and endoplasmic reticulum stress as the major secretome features associated with chemoresistant phenotype. Accordingly, two proteins implicated in these processes including RPA1 and HSPA5/GRP78 were discussed in more details in the context of biological networks and their importance as potential secretome targets for further functional and clinical evaluation. Expression patterns of RPA1 and HSPA5/GRP78 in tumor tissues from colon cancer patients were also found in additional in silico analyses to be associated with BRAFV600E mutation status, which opens the possibility to extrapolate our findings and their clinical implication to other solid tumors harboring BRAFV600E mutation, such as melanoma. | Evseev D, Osipova D, Kalinina I, Raykina E, Ignatova A, Lyudovskikh E, Baidildina D, Popov A, Zhogov V, Semchenkova A, Litvin E, Kotskaya N, Cherniak E, Voronin K, Burtsev E, Bronin G, Vlasova I, Purbueva B, Fink O, Pristanskova E, Dzhukaeva I, Erega E, Novichkova G, Maschan A, Maschan M (2023) Vemurafenib combined with cladribine and cytarabine results in durable remission of pediatric BRAF V600E-positive LCH. Blood advances 7, 5246-5257 [PubMed:37216396] [show Abstract] Langerhans cell histiocytosis (LCH) is a disorder with a variety of clinical signs. The most severe forms affect risk organs (RO). The established role of the BRAF V600E mutation in LCH led to a targeted approach. However, targeted therapy cannot cure the disease, and cessation leads to quick relapses. Here, we combined cytosine-arabinoside (Ara-C) and 2'-chlorodeoxyadenosine (2-CdA) with targeted therapy to achieve stable remission. Nineteen children were enrolled in the study: 13 were RO-positive (RO+) and 6 RO-negative (RO-). Five patients received the therapy upfront, whereas the other 14 received it as a second or third line. The protocol starts with 28 days of vemurafenib (20 mg/kg), which is followed by 3 courses of Ara-C and 2-CdA (100 mg/m2 every 12 h, 6 mg/m2 per day, days 1-5) with concomitant vemurafenib therapy. After that, vemurafenib therapy was stopped, and 3 courses of mono 2-CdA followed. All patients rapidly responded to vemurafenib: the median disease activity score decreased from 13 to 2 points in the RO+ group and from 4.5 to 0 points in the RO- group on day 28. All patients except 1 received complete protocol treatment, and 15 of them did not have disease progression. The 2-year reactivation/progression-free survival (RFS) for RO+ was 76.9% with a median follow-up of 21 months and 83.3% with a median follow-up of 29 months for RO-. Overall survival is 100%. Importantly, 1 patient experienced secondary myelodysplastic syndrome after 14 months from vemurafenib cessation. Our study demonstrates that combined vemurafenib plus 2-CdA and Ara-C is effective in a cohort of children with LCH, and the toxicity is manageable. This trial is registered at www.clinicaltrials.gov as NCT03585686. | Madej E, Brożyna AA, Adamczyk A, Wronski N, Harazin-Lechowska A, Muzyk A, Makuch K, Markiewicz M, Rys J, Wolnicka-Glubisz A (2023) Vemurafenib and Dabrafenib Downregulates RIPK4 Level. Cancers 15, 918 [PubMed:36765875] [show Abstract] Vemurafenib and dabrafenib are BRAF kinase inhibitors (BRAFi) used for the treatment of patients with melanoma carrying the V600E BRAF mutation. However, melanoma cells develop resistance to both drugs when used as monotherapy. Therefore, mechanisms of drug resistance are investigated, and new molecular targets are sought that could completely inhibit melanoma progression. Since receptor-interacting protein kinase (RIPK4) probably functions as an oncogene in melanoma and its structure is similar to the BRAF protein, we analyzed the impact of vemurafenib and dabrafenib on RIPK4 in melanomas. The in silico study confirmed the high similarity of BRAF kinase domains to the RIPK4 protein at both the sequence and structural levels and suggests that BRAFi could directly bind to RIPK4 even more strongly than to ATP. Furthermore, BRAFi inhibited ERK1/2 activity and lowered RIPK4 protein levels in BRAF-mutated melanoma cells (A375 and WM266.4), while in wild-type BRAF cells (BLM and LoVo), both inhibitors decreased the level of RIPK4 and enhanced ERK1/2 activity. The phosphorylation of phosphatidylethanolamine binding protein 1 (PEBP1)-a suppressor of the BRAF/MEK/ERK pathway-via RIPK4 observed in pancreatic cancer did not occur in melanoma. Neither downregulation nor upregulation of RIPK4 in BRAF- mutated cells affected PEBP1 levels or the BRAF/MEK/ERK pathway. The downregulation of RIPK4 inhibited cell proliferation and the FAK/AKT pathway, and increased BRAFi efficiency in WM266.4 cells. However, the silencing of RIPK4 did not induce apoptosis or necroptosis. Our study suggests that RIPK4 may be an off-target for BRAF inhibitors. | Oliveira-Santos A, Dagda M, Wittmann J, Smalley R, Burkin DJ (2023) Vemurafenib improves muscle histopathology in a mouse model of LAMA2-related congenital muscular dystrophy. Disease models & mechanisms 16, dmm049916 [PubMed:37021539] [show Abstract] Laminin-α2-related congenital muscular dystrophy (LAMA2-CMD) is a neuromuscular disease affecting around 1-9 in 1,000,000 children. LAMA2-CMD is caused by mutations in the LAMA2 gene resulting in the loss of laminin-211/221 heterotrimers in skeletal muscle. LAMA2-CMD patients exhibit severe hypotonia and progressive muscle weakness. Currently, there is no effective treatment for LAMA2-CMD and patients die prematurely. The loss of laminin-α2 results in muscle degeneration, defective muscle repair and dysregulation of multiple signaling pathways. Signaling pathways that regulate muscle metabolism, survival and fibrosis have been shown to be dysregulated in LAMA2-CMD. As vemurafenib is a US Food and Drug Administration (FDA)-approved serine/threonine kinase inhibitor, we investigated whether vemurafenib could restore some of the serine/threonine kinase-related signaling pathways and prevent disease progression in the dyW-/- mouse model of LAMA2-CMD. Our results show that vemurafenib reduced muscle fibrosis, increased myofiber size and reduced the percentage of fibers with centrally located nuclei in dyW-/- mouse hindlimbs. These studies show that treatment with vemurafenib restored the TGF-β/SMAD3 and mTORC1/p70S6K signaling pathways in skeletal muscle. Together, our results indicate that vemurafenib partially improves histopathology but does not improve muscle function in a mouse model of LAMA2-CMD. | Dummer R, Flaherty KT, Robert C, Arance A, B de Groot JW, Garbe C, Gogas HJ, Gutzmer R, Krajsová I, Liszkay G, Loquai C, Mandalà M, Schadendorf D, Yamazaki N, Pietro AD, Cantey-Kiser J, Edwards M, Ascierto PA (2023) COLUMBUS 5-year update: a randomized, open-label, phase III trial of encorafenib plus binimetinib versus vemurafenib or encorafenib in patients with BRAF. Future oncology (London, England) 19, 1091-1098 [PubMed:37309702] [show Abstract]
What is this summary about?Here, we summarize the 5-year results from part 1 of the COLUMBUS clinical study, which looked at the combination treatment of encorafenib plus binimetinib in people with a specific type of skin cancer called melanoma. Encorafenib (BRAFTOVI®) and binimetinib (MEKTOVI®) are medicines used to treat a type of melanoma that has a change in the BRAF gene, called advanced or metastatic BRAF V600-mutant melanoma. Participants with advanced or metastatic BRAF V600-mutant melanoma took either encorafenib plus binimetinib together (COMBO group), compared with encorafenib alone (ENCO group) or vemurafenib (ZELBORAF®) alone (VEMU group).What were the results?In this 5-year update, more participants in the COMBO group were alive for longer without their disease getting worse after 5 years than those in the VEMU and ENCO groups. Patients in the COMBO group were alive for longer without their disease getting worse when they: Had less advanced cancer Were able to do more daily activities Had normal lactate dehydrogenase (LDH) levels Had fewer organs with tumors before treatment After treatment, fewer participants in the COMBO group received additional anticancer treatment than participants in the VEMU and ENCO groups. The number of participants who reported severe side effects was similar for each treatment. The side effects caused by the drugs in the COMBO group decreased over time.What do the results mean?Overall, this 5-year update confirmed that people with BRAF V600-mutant melanoma that has spread to other parts of the body and who took encorafenib plus binimetinib were alive for longer without their disease getting worse than those who took vemurafenib or encorafenib alone. Clinical Trial Registration: NCT01909453 (ClinicalTrials.gov). | Peng J, Lin Z, Chen W, Ruan J, Deng F, Yao L, Rao M, Xiong X, Xu S, Zhang X, Liu X, Sun X (2023) Vemurafenib induces a noncanonical senescence-associated secretory phenotype in melanoma cells which promotes vemurafenib resistance. Heliyon 9, e17714 [PubMed:37456058] [show Abstract] More than one half melanoma patients have BRAF gene mutation. BRAF inhibitor vemurafenib is an effective medication for these patients. However, acquired resistance is generally inevitable, the mechanisms of which are not fully understood. Cell senescence and senescence-associated secretory phenotype (SASP) are involved in extensive biological functions. This study was designed to explore the possible role of senescent cells in vemurafenib resistance. The results showed that vemurafenib treatment induced BRAF-mutant but not wild-type melanoma cells into senescence, as manifested by positive β-galactosidase staining, cell cycle arrest, enlarged cellular morphology, and cyclin D1/p-Rb pathway inhibition. However, the senescent cells induced by vemurafenib (SenV) did not display DNA damage response, p53/p21 pathway activation, reactive oxygen species accumulation, decline of mitochondrial membrane potential, or secretion of canonical SASP cytokines. Instead, SenV released other cytokines, including CCL2, TIMP2, and NGFR, to protect normal melanoma cells from growth inhibition upon vemurafenib treatment. Xenograft experiments further confirmed that vemurafenib induced melanoma cells into senescence in vivo. The results suggest that vemurafenib can induce robust senescence in BRAFV600E melanoma cells, leading to the release of resistance-conferring cytokines. Both the senescent cells and the resistant cytokines could be potential targets for tackling vemurafenib resistance. | Hu HF, Gao GB, He X, Li YY, Li YJ, Li B, Pan Y, Wang Y, He QY (2023) Targeting ARF1-IQGAP1 interaction to suppress colorectal cancer metastasis and vemurafenib resistance. Journal of advanced research 51, 135-147 [PubMed:36396045] [show Abstract]
IntroductionAcquired resistance to BRAF inhibitor vemurafenib is frequently observed in metastatic colorectal cancer (CRC), and it is a thorny issue that results in treatment failure. As adaptive responses for vemurafenib treatment, a series of cellular bypasses are response for the adaptive feedback reactivation of ERK signaling, which warrant further investigation.ObjectivesWe identified ARF1 (ADP-ribosylation factor 1) as a novel regulator of both vemurafenib resistance and cancer metastasis, its molecular mechanism and potential inhibitor were investigated in this study.MethodsDIA-based quantitative proteomics and RNA-seq were performed to systematic analyze the profiling of vemurafenib-resistant RKO cells (RKO-VR) and highly invasive RKO cells (RKO-I8), respectively. Co‑immunoprecipitation assay was performed to detect the interaction of ARF1 and IQGAP1 (IQ-domain GTPase activating protein 1). An ELISA-based drug screen system on FDA-approved drug library was established to screen the compounds against the interaction of ARF1-IQGAP1.The biological functions of ARF1 and LY2835219 were determined by transwell, western blotting, Annexin V-FITC/PI staining and in vivo experimental metastasis assays.ResultsWe found that ARF1 strongly interacted with IQGAP1 to activate ERK signaling in VR and I8 CRC cells. Deletion of IQGAP1 or inactivation of ARF1 (ARF-T48S) restored the invasive ability induced by ARF1. As ARF1-IQGAP1 interaction is essential for ERK activation, we screened LY2835219 as novel inhibitor of ARF1-IQGAP1 interaction, which inactivated ERK signaling and suppressed CRC metastasis and vemurafenib-resistance in vitro and in vivo with no observed side effect. Furthermore, LY2835219 in combined treatment with vemurafenib exerted significantly inhibitory effect on ARF1-mediated cancer metastasis than used independently.ConclusionThis study uncovers that ARF1-IQGAP1 interaction-mediated ERK signaling reactivation is critical for vemurafenib resistance and cancer metastasis, and that LY2835219 is a promising therapeutic agent for CRC both as a single agent and in combination with vemurafenib. | Ma W, Tian M, Hu L, Ruan X, Zhang W, Zheng X, Gao M (2023) Early Combined SHP2 Targeting Reverses the Therapeutic Resistance of Vemurafenib in Thyroid Cancer. Journal of Cancer 14, 1592-1604 [PubMed:37325052] [show Abstract] The BRAFV600E mutation is the most common oncogenic mutation in thyroid cancer, suggesting an aggressive subtype of thyroid cancer and poor prognosis. Vemurafenib, a selective inhibitor of BRAFV600E, may provide therapeutic benefit in various cancers including thyroid cancer. However, the prevalence of drug resistance remains a challenge because of the feedback activation of the MAPK/ERK and PI3K/AKT pathways. In treating thyroid cancer cells with vemurafenib, we have detected reactivation of the MAPK/ERK signaling pathway as a result of the release of multiple receptor tyrosine kinases (RTKs) from the negative feedback of ERK phosphorylation. SHP2 is an important target protein downstream of the RTK signaling pathway. Decreasing it through SHP2 knockdown or the use of an inhibitor of SHP2 (SHP099) was found to significantly increase the early sensitivity and reverse the late resistance to vemurafenib in BRAFV600E mutant thyroid cancer cells. Overall, our findings suggest that blocking SHP2 reverses the reactivation of the MAPK/ERK signaling pathway caused by the activation of RTKs and improves the sensitivity of thyroid cancer to vemurafenib, which has potential implications for mechanism-based early combination strategies to treat thyroid cancer. | Wang X, Cheng Q (2023) Suppression of exosomal hsa_circ_0001005 eliminates the Vemurafenib resistance of melanoma. Journal of cancer research and clinical oncology 149, 5921-5936 [PubMed:36598578] [show Abstract]
ObjectivesMore and more evidences show that circular RNAs (circRNAs) can be used as miRNA sponge to regulate the drug resistance of malignancies, including melanoma. However, how exosomal circRNAs participate in the therapeutic resistance of melanoma remains ambiguous.MethodsVemurafenib-resistant A375 cells were cultured and then the circRNA profile of exosomes from the parental A375 and A375-resistant cells were sequenced. Transmission electron microscopy (TEM), exogenous nanoparticle tracking analysis (NTA) and Western Blot assays were leveraged to confirm the successful collection of exosomes from A375 and A375R cells. Another five published RNA-seq data and microRNA-seq data, and seven miRNA databases were collected to construct a competing endogenous RNA (ceRNA) network. Comprehensive bioinformatic analysis was adopted to identify key molecules related to the drug resistance, including multiscale embedded gene co-expression network analysis (MEGENA). Then, qRT-PCR, cell viability and colony formation were used to estimate the function of hub circRNAs. The role of has_circ_0001005 in vivo was verified via xenograft assay. The Tumor online Prognostic analyses Platform (ToPP) was leveraged to develop the has_circ_0001005-related prognostic models for melanoma patients based on TCGA data.ResultsCompared with parental cells, hsa_circ_0001005 expression was significantly increased in resistant cells and their exosomes. The elevated level of hsa_circ_0001005 was related to the poor clinical prognosis of melanoma patients. Hsa_circ_0001005 found in melanoma was mainly secreted by drug-resistant cells as exosomes. Exosomal hsa_circ_0001005 activated multiple canonical pathways related to drug resistance through sponging four miRNAs, thus suppressing the drug sensitivity of melanoma. Knocking down hsa_circ_0001005 in vitro, we found that the inhibition of hsa_circ_0001005 could hinder the clone formation of melanoma. Further in vivo animal experiments suggested that suppression of hsa_circ_0001005 can increase the sensitivity to Vemurafenib of melanoma cells. Finally, we also constructed the functional regulatory ceRNA network and prognostic risk models for hsa_circ_0001005, and further survival analysis reveals that the regulatory network and prognostic risk models obviously affected the prognosis of melanoma patients.ConclusionsThis study confirmed that the level of hsa_circ_0001005 in exosomes is the key factor affecting drug resistance of melanoma, which provides a new potential therapeutic target for melanoma patients. | Laajala M, Zwaagstra M, Martikainen M, Nekoua MP, Benkahla M, Sane F, Gervais E, Campagnola G, Honkimaa A, Sioofy-Khojine AB, Hyöty H, Ojha R, Bailliot M, Balistreri G, Peersen O, Hober D, Van Kuppeveld F, Marjomäki V (2023) Vemurafenib Inhibits Acute and Chronic Enterovirus Infection by Affecting Cellular Kinase Phosphatidylinositol 4-Kinase Type IIIβ. Microbiology spectrum 11, e0055223 [PubMed:37436162] [show Abstract] Enteroviruses are one of the most abundant viruses causing mild to serious acute infections in humans and also contributing to chronic diseases like type 1 diabetes. Presently, there are no approved antiviral drugs against enteroviruses. Here, we studied the potency of vemurafenib, an FDA-approved RAF kinase inhibitor for treating BRAFV600E mutant-related melanoma, as an antiviral against enteroviruses. We showed that vemurafenib prevented enterovirus translation and replication at low micromolar dosage in an RAF/MEK/ERK-independent manner. Vemurafenib was effective against group A, B, and C enteroviruses, as well as rhinovirus, but not parechovirus or more remote viruses such as Semliki Forest virus, adenovirus, and respiratory syncytial virus. The inhibitory effect was related to a cellular phosphatidylinositol 4-kinase type IIIβ (PI4KB), which has been shown to be important in the formation of enteroviral replication organelles. Vemurafenib prevented infection efficiently in acute cell models, eradicated infection in a chronic cell model, and lowered virus amounts in pancreas and heart in an acute mouse model. Altogether, instead of acting through the RAF/MEK/ERK pathway, vemurafenib affects the cellular PI4KB and, hence, enterovirus replication, opening new possibilities to evaluate further the potential of vemurafenib as a repurposed drug in clinical care. IMPORTANCE Despite the prevalence and medical threat of enteroviruses, presently, there are no antivirals against them. Here, we show that vemurafenib, an FDA-approved RAF kinase inhibitor for treating BRAFV600E mutant-related melanoma, prevents enterovirus translation and replication. Vemurafenib shows efficacy against group A, B, and C enteroviruses, as well as rhinovirus, but not parechovirus or more remote viruses such as Semliki Forest virus, adenovirus, and respiratory syncytial virus. The inhibitory effect acts through cellular phosphatidylinositol 4-kinase type IIIβ (PI4KB), which has been shown to be important in the formation of enteroviral replication organelles. Vemurafenib prevents infection efficiently in acute cell models, eradicates infection in a chronic cell model, and lowers virus amounts in pancreas and heart in an acute mouse model. Our findings open new possibilities to develop drugs against enteroviruses and give hope for repurposing vemurafenib as an antiviral drug against enteroviruses. | Żołek T, Mazurek A, Grudzinski IP (2023) In Silico Studies of Novel Vemurafenib Derivatives as BRAF Kinase Inhibitors. Molecules (Basel, Switzerland) 28, 5273 [PubMed:37446932] [show Abstract] BRAF inhibitors have improved the treatment of advanced or metastatic melanoma in patients that harbor a BRAFT1799A mutation. Because of new insights into the role of aberrant glycosylation in drug resistance, we designed and studied three novel vemurafenib derivatives possessing pentose-associated aliphatic ligands-methyl-, ethyl-, and isopropyl-ketopentose moieties-as potent BRAFV600E kinase inhibitors. The geometries of these derivatives were optimized using the density functional theory method. Molecular dynamic simulations were performed to find interactions between the ligands and BRAFV600E kinase. Virtual screening was performed to assess the fate of derivatives and their systemic toxicity, genotoxicity, and carcinogenicity. The computational mapping of the studied ligand-BRAFV600E complexes indicated that the central pyrrole and pyridine rings of derivatives were located within the hydrophobic ATP-binding site of the BRAFV600E protein kinase, while the pentose ring and alkyl chains were mainly included in hydrogen bonding interactions. The isopropyl-ketopentose derivative was found to bind the BRAFV600E oncoprotein with more favorable energy interaction than vemurafenib. ADME-TOX in silico studies showed that the derivatives possessed some desirable pharmacokinetic and toxicologic properties. The present results open a new avenue to study the carbohydrate derivatives of vemurafenib as potent BRAFV600E kinase inhibitors to treat melanoma. | Zhou H, Li XF, Chen MJ, Cai LL (2023) Severe cumulative skin toxicity during toripalimab combined with vemurafenib following toripalimab alone. Open life sciences 18, 20220606 [PubMed:37215493] | Piejko K, Cybulska-Stopa B, Ziętek M, Dziura R, Galus Ł, Kempa-Kamińska N, Ziółkowska B, Rutkowska E, Kopciński T, Kubiatowski T, Bal W, Suwiński R, Mackiewicz J, Kamińska-Winciorek G, Czarnecka AM, Rutkowski P (2023) Long-Term Real-World Outcomes and Safety of Vemurafenib and Vemurafenib + Cobimetinib Therapy in Patients with BRAF-Mutated Melanoma. Targeted oncology 18, 235-245 [PubMed:36906728] [show Abstract]
BackgroundCombined treatment with BRAFi and/or MEK inhibitors (MEKi) improves outcomes in advanced melanoma patients in comparison with monotherapy.ObjectiveWe aim to report real-world treatment efficacy and safety of vemurafenib (V) and vemurafenib + cobimetinib (V + C) from 10 years of practice.Patients and methodsA total of 275 consecutive patients with unresectable or metastatic BRAF mutated melanoma started first-line V or V + C treatment between 1 October 2013 and 31 December 2020. Survival analyses were performed using the Kaplan-Meier method, and Log-rank and Chi-square tests were used for comparison between groups.ResultsThe estimated median overall survival (mOS) was 10.3 months in the V group, and 12.3 months in the V + C group (p = 0.0005; HR = 1.58, 95% CI 1.2-2.1), although the latter group of patients had lactate dehydrogenase elevated numerically more often. Estimated median progression-free survival (mPFS) was 5.5 months in the V group, and 8.3 months in the V + C group (p = 0.0002; HR = 1.62, 95% CI 1.3-2.1). Complete response, partial response, stable disease, and progressive disease as best responses were recorded in the V/V + C groups in 7%/10%, 52%/46%, 26%/28%, and 15%/16% of patients, respectively. The numbers of patients with any grade of adverse effects were similar in both groups.ConclusionsWe confirmed significant improvement in the mOS and mPFS of unresectable and/or metastatic BRAF mutated-melanoma patients treated outside clinical trials with V + C as compared with V, with no major increase in toxicity for the combination. | Editors of The Lancet Oncology (2023) Retraction and republication-Atezolizumab, vemurafenib, and cobimetinib in patients with melanoma with CNS metastases (TRICOTEL): a multicentre, open-label, single-arm, phase 2 study. The Lancet. Oncology 24, 832 [PubMed:37459870] | Dummer R, Queirolo P, Gerard Duhard P, Hu Y, Wang D, de Azevedo SJ, Robert C, Ascierto PA, Chiarion-Sileni V, Pronzato P, Spagnolo F, Mujika Eizmendi K, Liszkay G, de la Cruz Merino L, Tawbi H (2023) Atezolizumab, vemurafenib, and cobimetinib in patients with melanoma with CNS metastases (TRICOTEL): a multicentre, open-label, single-arm, phase 2 study. The Lancet. Oncology 24, e461-e471 [PubMed:37459873] [show Abstract]
BackgroundTargeted therapy and immunotherapy have shown intracranial activity in melanoma with CNS metastases, but there remains an unmet need, particularly for patients with symptomatic CNS metastases. We aimed to evaluate atezolizumab in combination with cobimetinib or vemurafenib plus cobimetinib in patients with melanoma with CNS metastases.MethodsTRICOTEL was a multicentre, open-label, single-arm, phase 2 study done in two cohorts: a BRAFV600 wild-type cohort and a BRAFV600 mutation-positive cohort, recruited at 21 hospitals and oncology centres in Brazil, France, Germany, Hungary, Italy, Spain, and Switzerland. Eligible patients were aged 18 years or older with previously untreated metastatic melanoma, brain metastases of 5 mm or larger in at least one dimension, and an Eastern Cooperative Oncology Group performance status of 2 or less. Patients in the BRAFV600 wild-type cohort received intravenous atezolizumab (840 mg, days 1 and 15 of each 28-day cycle) plus oral cobimetinib (60 mg once daily, days 1-21). Patients in the BRAFV600 mutation-positive cohort received intravenous atezolizumab (840 mg, days 1 and 15 of each 28-day cycle) plus oral vemurafenib (720 mg twice daily) plus oral cobimetinib (60 mg once daily, days 1-21); atezolizumab was withheld in cycle 1. Treatment was continued until progression, toxicity, or death. The primary outcome was intracranial objective response rate confirmed by assessments at least 4 weeks apart, as assessed by independent review committee (IRC) using modified Response Evaluation Criteria in Solid Tumours version 1.1. Because of early closure of the BRAFV600 wild-type cohort, the primary endpoint of intracranial objective response rate by IRC assessment was not done in this cohort; intracranial objective response rate by investigator assessment was reported instead. Efficacy and safety were analysed in all patients who received at least one dose of study medication. This trial is closed to enrolment and is registered with ClinicalTrials.gov, NCT03625141.FindingsBetween Dec 13, 2018, and Dec 7, 2020, 65 patients were enrolled in the BRAFV600 mutation-positive cohort; the BRAFV600 wild-type cohort was closed early after enrolment of 15 patients. Median follow-up was 9·7 months (IQR 6·3-15·0) for the BRAFV600 mutation-positive cohort and 6·2 months (3·5-23·0) for the BRAFV600 wild-type cohort. Intracranial objective response rate was 42% (95% CI 29-54) by IRC assessment in the BRAFV600 mutation-positive cohort and 27% (95% CI 8-55) by investigator assessment in the BRAFV600 wild-type cohort. Treatment-related grade 3 or worse adverse events occurred in 41 (68%) of 60 patients who received atezolizumab plus vemurafenib plus cobimetinib in the BRAFV600 mutation-positive cohort, the most common of which were lipase increased (15 [25%] of 60 patients) and blood creatine phosphokinase increased (11 [18%]). Eight (53%) of 15 patients treated with atezolizumab plus cobimetinib in the BRAFV600 wild-type cohort had treatment-related grade 3 or worse adverse events, most commonly anaemia (two [13%]) and dermatitis acneiform (two [13%]). Treatment-related serious adverse events occurred in 14 (23%) of 60 patients who received triplet therapy in the BRAFV600 mutation-positive cohort and two (13%) of 15 in the BRAFV600 wild-type cohort. No treatment-related deaths occurred.InterpretationAtezolizumab plus vemurafenib and cobimetinib provided intracranial activity in patients with BRAFV600-mutated melanoma with CNS metastases.FundingF Hoffmann-La Roche. | Lang M, Longerich T, Anamaterou C (2023) Targeted therapy with vemurafenib in BRAF(V600E)-mutated anaplastic thyroid cancer. Thyroid research 16, 5 [PubMed:36855200] [show Abstract]
BackgroundAnaplastic thyroid cancer (ATC) is one of the most aggressive malignancies, representing less than 5% of all thyroid carcinomas. Τhe median survival is limited to months due to the resistance of ATC to surgery, radioiodine therapy, radiotherapy and chemotherapy. This review will cover novel agents involving several cellular signaling pathways including the BRAF pathway. The BRAF inhibitor vemurafenib improves survival among patients with metastatic melanoma, hairy-cell leukemia and intracranial neoplasms with BRAF gene mutations. The frequency of a BRAF (V600E) mutation in ATC is about 25%.Case presentationWe report the first case of a marked partial response to adjuvant first line monotherapy with vemurafenib in BRAF V600E-mutated ATC. The 78-year-old man showed a sustained response for 7 months, thereafter scans revealed progressive disease and the patient died 10 months after first diagnosis. This case report is accompanied by a comprehensive review of current strategies and tools for ATC treatment.ConclusionsThis case and the review of current data confirm the benefit of BRAF inhibition in BRAF-mutated ATC, limited by acquired resistance to targeted therapy. | Furfaro AL, Loi G, Ivaldo C, Passalacqua M, Pietra G, Mann GE, Nitti M (2022) HO-1 Limits the Efficacy of Vemurafenib/PLX4032 in BRAFV600E Mutated Melanoma Cells Adapted to Physiological Normoxia or Hypoxia. Antioxidants (Basel, Switzerland) 11, 1171 [PubMed:35740068] [show Abstract] Induction of heme oxygenase 1 (HO-1) favors immune-escape in BRAFV600 melanoma cells treated with Vemurafenib/PLX4032 under standard cell culture conditions. However, the oxygen tension under standard culture conditions (~18 kPa O2) is significantly higher than the physiological oxygen levels encountered in vivo. In addition, cancer cells in vivo are often modified by hypoxia. In this study, MeOV-1 primary melanoma cells bearing the BRAFV600E mutation, were adapted to either 5 kPa O2 (physiological normoxia) or 1 kPa O2 (hypoxia) and then exposed to 10 μM PLX4032. PLX4032 abolished ERK phosphorylation, reduced Bach1 expression and increased HO-1 levels independent of pericellular O2 tension. Moreover, cell viability was significantly reduced further in cells exposed to PLX4032 plus Tin mesoporphyrin IX, a HO-1 inhibitor. Notably, our findings provide the first evidence that HO-1 inhibition in combination with PLX4032 under physiological oxygen tension and hypoxia restores and increases the expression of the NK ligands ULBP3 and B7H6 compared to cells exposed to PLX4032 alone. Interestingly, although silencing NRF2 prevented PLX4032 induction of HO-1, other NRF2 targeted genes were unaffected, highlighting a pivotal role of HO-1 in melanoma resistance and immune escape. The present findings may enhance translation and highlight the potential of the HO-1 inhibitors in the therapy of BRAFV600 melanomas. | Garutti M, Bergnach M, Polesel J, Palmero L, Pizzichetta MA, Puglisi F (2022) BRAF and MEK Inhibitors and Their Toxicities: A Meta-Analysis. Cancers 15, 141 [PubMed:36612138] [show Abstract]
PurposeThis meta-analysis summarizes the incidence of treatment-related adverse events (AE) of BRAFi and MEKi.MethodsA systematic search of Medline/PubMed was conducted to identify suitable articles published in English up to 31 December 2021. The primary outcomes were profiles for all-grade and grade 3 or higher treatment-related AEs, and the analysis of single side effects belonging to both categories.ResultsThe overall incidence of treatment-related all-grade Aes was 99% for Encorafenib (95% CI: 0.97-1.00) and 97% for Trametinib (95% CI: 0.92-0.99; I2 = 66%) and Binimetinib (95% CI: 0.94-0.99; I2 = 0%). In combined therapies, the rate was 98% for both Vemurafenib + Cobimetinib (95% CI: 0.96-0.99; I2 = 77%) and Encorafenib + Binimetinib (95% CI: 0.96-1.00). Grade 3 or higher adverse events were reported in 69% of cases for Binimetinib (95% CI: 0.50-0.84; I2 = 71%), 68% for Encorafenib (95% CI: 0.61-0.74), and 72% for Vemurafenib + Cobimetinib (95% CI: 0.65-0.79; I2 = 84%). The most common grade 1-2 AEs were pyrexia (43%) and fatigue (28%) for Dabrafenib + Trametinib and diarrhea for both Vemurafenib + Cobimetinib (52%) and Encorafenib + Binimetinib (34%). The most common AEs of grade 3 or higher were pyrexia, rash, and hypertension for Dabrafenib + Trametinib (6%), rash and hypertension for Encorafenib + Binimetinib (6%), and increased AST and ALT for Vemurafenib + Cobimetinib (10%).ConclusionsOur study provides comprehensive data on treatment-related adverse events of BRAFi and MEKi combination therapies, showing related toxicity profiles to offer a helpful tool for clinicians in the choice of therapy. | Johnson AE, Raju AR, Jacob A, Hildebrandt GC (2022) Case report: A case of classic hairy cell leukemia with CNS involvement treated with vemurafenib. Frontiers in oncology 12, 1100577 [PubMed:36713531] [show Abstract] Hairy cell leukemia (HCL) is a rare mature B-cell lymphoproliferative disorder and most often presents as classic hairy cell leukemia. This entity is characterized by an indolent course and the presence of the BRAF V600E mutation. We report the case of an 80-year-old man with a history of classical hairy cell leukemia who presented with fatigue, dizziness, shortness of breath, blurring of vision, and headache. His initial diagnosis was 9 years prior, and he received treatments with cladribine, pentostatin, and rituximab. The workup showed an elevated white blood cell count with atypical lymphocytes, anemia, and thrombocytopenia. A peripheral blood smear confirmed HCL relapse, and a magnetic resonance imaging (MRI) of the brain showed diffuse, nonenhancing masses in the supratentorial and infratentorial regions of the brain. He was initiated on treatment with vemurafenib, with improvements in his white blood cell count and a recovery of his platelet count and hemoglobin. A repeat MRI of the brain after 3 months showed complete resolution of the lesions. Vemurafenib was discontinued after 6 months, with bone marrow biopsy showing no evidence of residual hairy cell leukemia. There have only been limited reports of HCL involvement in the central nervous system in the literature. Due to the rarity of the condition, it is not clear which treatments can be effective for intracranial disease control. Our report shows the successful use of vemurafenib, resulting in complete remission of relapsed HCL with CNS involvement. | Tabolacci C, Giordano D, Rossi S, Cordella M, D'Arcangelo D, Moschella F, D'Atri S, Biffoni M, Facchiano A, Facchiano F (2022) Identification of Dihydrolipoamide Dehydrogenase as Potential Target of Vemurafenib-Resistant Melanoma Cells. Molecules (Basel, Switzerland) 27, 7800 [PubMed:36431901] [show Abstract]
BackgroundDespite recent improvements in therapy, the five-year survival rate for patients with advanced melanoma is poor, mainly due to the development of drug resistance. The aim of the present study was to investigate the mechanisms underlying this phenomenon, applying proteomics and structural approaches to models of melanoma cells.MethodsSublines from two human (A375 and SK-MEL-28) cells with acquired vemurafenib resistance were established, and their proteomic profiles when exposed to denaturation were identified through LC-MS/MS analysis. The pathways derived from bioinformatics analyses were validated by in silico and functional studies.ResultsThe proteomic profiles of resistant melanoma cells were compared to parental counterparts by taking into account protein folding/unfolding behaviors. Several proteins were found to be involved, with dihydrolipoamide dehydrogenase (DLD) being the only one similarly affected by denaturation in all resistant cell sublines compared to parental ones. DLD expression was observed to be increased in resistant cells by Western blot analysis. Protein modeling analyses of DLD's catalytic site coupled to in vitro assays with CPI-613, a specific DLD inhibitor, highlighted the role of DLD enzymatic functions in the molecular mechanisms of BRAFi resistance.ConclusionsOur proteomic and structural investigations on resistant sublines indicate that DLD may represent a novel and potent target for overcoming vemurafenib resistance in melanoma cells. | Rossman P, Zabka TS, Ruple A, Tuerck D, Ramos-Vara JA, Liu L, Mohallem R, Merchant M, Franco J, Fulkerson CM, Bhide KP, Breen M, Aryal UK, Murray E, Dybdal N, Utturkar SM, Fourez LM, Enstrom AW, Dhawan D, Knapp DW (2021) Phase I/II Trial of Vemurafenib in Dogs with Naturally Occurring, BRAF-mutated Urothelial Carcinoma. Molecular cancer therapeutics 20, 2177-2188 [PubMed:34433660] [show Abstract] BRAF-targeted therapies including vemurafenib (Zelboraf) induce dramatic cancer remission; however, drug resistance commonly emerges. The purpose was to characterize a naturally occurring canine cancer model harboring complex features of human cancer, to complement experimental models to improve BRAF-targeted therapy. A phase I/II clinical trial of vemurafenib was performed in pet dogs with naturally occurring invasive urothelial carcinoma (InvUC) harboring the canine homologue of human BRAF V600E The safety, MTD, pharmacokinetics, and antitumor activity were determined. Changes in signaling and immune gene expression were assessed by RNA sequencing and phosphoproteomic analyses of cystoscopic biopsies obtained before and during treatment, and at progression. The vemurafenib MTD was 37.5 mg/kg twice daily. Anorexia was the most common adverse event. At the MTD, partial remission occurred in 9 of 24 dogs (38%), with a median progression-free interval of 181 days (range, 53-608 days). In 18% of the dogs, new cutaneous squamous cell carcinoma and papillomas occurred, a known pharmacodynamic effect of vemurafenib in humans. Upregulation of genes in the classical and alternative MAPK-related pathways occurred in subsets of dogs at cancer progression. The most consistent transcriptomic changes were the increase in patterns of T lymphocyte infiltration during the first month of vemurafenib, and of immune failure accompanying cancer progression. In conclusion, the safety, antitumor activity, and cutaneous pharmacodynamic effects of vemurafenib, and the development of drug resistance in dogs closely mimic those reported in humans. This suggests BRAF-mutated canine InvUC offers an important complementary animal model to improve BRAF-targeted therapies in humans. | Shirkavand A, Mohajerani E, Farivar S, Ataie-Fashtami L, Ghazimoradi MH (2021) Monitoring the Response of Skin Melanoma Cell Line (A375) to Treatment with Vemurafenib: A Pilot In Vitro Optical Spectroscopic Study. Photobiomodulation, photomedicine, and laser surgery 39, 164-177 [PubMed:33595357] [show Abstract] Objective: The aim of this study was to investigate the feasibility of optical spectroscopy as a nondestructive approach in monitoring the skin melanoma cancer cell response to treatment. Background: Owing to the growing trend of personalized medicine, monitoring the treatment response individually is particularly crucial for optimizing cancer therapy efficiency. In the past decade, optical sensing, using diffuse reflectance spectroscopy, has been used to improve the identification of cancerous lesions in various organs. Until now, surveys have mainly focused on the nondestructive application of optical sensing used to diagnose and discriminate normal and abnormal biomedical lesions or samples. Meanwhile, the response to the treatment might be monitored using these nondestructive technologies, thereby enabling further therapeutic modification. Methods: The human skin melanoma cell line (A375) donated from Switzerland (University Hospital Basel) was cultured. Vemurafenib (Zelboraf; Genentech/Roche, South San Francisco, CA) was used for cell treatments. The visible-near-infrared reflectance spectroscopy was conducted at different time intervals (before treatment, and at 1, 2, 7, and 14 days post-treatment for three drug doses 5, 25, and 75 μM) on cell plates using the portable CCD-based fiber optical spectrometer (USB2000; Ocean Optics). After data collection, the refractive index analysis for the fore-mentioned doses and days in one selected wavelength of 620 nm was examined using the previously developed computer program. Then, biological assays were selected as gold standard of cell death, apoptosis, and drug resistance gene expression. Results: There was a considerable decrease in the refractive index of cell samples in which biological assay confirmed cell death. Based on the flow cytometry data, a drug dose of 25 μM on day 7 seemed to induce necrosis. These findings show that spectroscopic findings strongly agree with concurrent biological studies and might lead to their use as an alternative method for monitoring treatment response to achieve more optimized cancer treatment. Conclusions: The findings show that reflectance spectroscopy, as a nondestructive real-time label-free way, is capable of providing quantitative information for treatment response determination that corresponds with biological assays. | Ko CJ, McNiff JM, Iftner A, Iftner T, Choi JN (2013) Vemurafenib (PLX-4032)-induced keratoses: verrucous but not verrucae. Journal of the American Academy of Dermatology 69, e95-6 [PubMed:23866896] | Yang H, Higgins B, Kolinsky K, Packman K, Bradley WD, Lee RJ, Schostack K, Simcox ME, Kopetz S, Heimbrook D, Lestini B, Bollag G, Su F (2012) Antitumor activity of BRAF inhibitor vemurafenib in preclinical models of BRAF-mutant colorectal cancer. Cancer research 72, 779-789 [PubMed:22180495] [show Abstract] The protein kinase BRAF is a key component of the RAS-RAF signaling pathway which plays an important role in regulating cell proliferation, differentiation, and survival. Mutations in BRAF at codon 600 promote catalytic activity and are associated with 8% of all human (solid) tumors, including 8% to 10% of colorectal cancers (CRC). Here, we report the preclinical characterization of vemurafenib (RG7204; PLX4032; RO5185426), a first-in-class, specific small molecule inhibitor of BRAF(V600E) in BRAF-mutated CRC cell lines and tumor xenograft models. As a single agent, vemurafenib shows dose-dependent inhibition of ERK and MEK phosphorylation, thereby arresting cell proliferation in BRAF(V600)-expressing cell lines and inhibiting tumor growth in BRAF(V600E) bearing xenograft models. Because vemurafenib has shown limited single-agent clinical activity in BRAF(V600E)-mutant metastatic CRC, we therefore explored a range of combination therapies, with both standard agents and targeted inhibitors in preclinical xenograft models. In a BRAF-mutant CRC xenograft model with de novo resistance to vemurafenib (RKO), tumor growth inhibition by vemurafenib was enhanced by combining with an AKT inhibitor (MK-2206). The addition of vemurafenib to capecitabine and/or bevacizumab, cetuximab and/or irinotecan, or erlotinib resulted in increased antitumor activity and improved survival in xenograft models. Together, our findings suggest that the administration of vemurafenib in combination with standard-of-care or novel targeted therapies may lead to enhanced and sustained clinical antitumor efficacy in CRCs harboring the BRAF(V600E) mutation. | Luke JJ, Hodi FS (2012) Vemurafenib and BRAF inhibition: a new class of treatment for metastatic melanoma. Clinical cancer research : an official journal of the American Association for Cancer Research 18, 9-14 [PubMed:22083257] [show Abstract] The U.S. Food and Drug Administration recently approved vemurafenib for the treatment of BRAF valine in exon 15, at codon 600 (V600E) mutant metastatic melanoma. Vemurafenib is a competitive small-molecule serine-threonine kinase inhibitor that functions by binding to the ATP-binding domain of mutant BRAF. Compared with dacarbazine chemotherapy, vemurafenib significantly improved the 6-month overall survival of patients from 64% to 84% and exhibited a response rate of approximately 50%. Median progression-free survival was also significantly improved with vemurafenib as compared with dacarbazine (5.3 versus 1.6 months, respectively), and this was consistent among groups analyzed, including age, sex, geography, Eastern Cooperative Oncology Group status, disease stage, and serum lactate dehydrogenase. The success of targeting melanoma genomics has created a paradigm shift for future drug development. Currently, the elucidation of resistant mechanisms to vemurafenib therapy remains an important area of active investigation that will shape rational drug treatments for melanoma. The development of vemurafenib, the role of BRAF targeting, and the changing landscape of treatment for melanoma provide a new foundation for clinical investigation. | Niehr F, von Euw E, Attar N, Guo D, Matsunaga D, Sazegar H, Ng C, Glaspy JA, Recio JA, Lo RS, Mischel PS, Comin-Anduix B, Ribas A (2011) Combination therapy with vemurafenib (PLX4032/RG7204) and metformin in melanoma cell lines with distinct driver mutations. Journal of translational medicine 9, 76 [PubMed:21609436] [show Abstract]
BackgroundA molecular linkage between the MAPK and the LKB1-AMPK energy sensor pathways suggests that combined MAPK oncogene inhibition and metabolic modulation of AMPK would be more effective than either manipulation alone in melanoma cell lines.Materials and methodsThe combination of the BRAF inhibitor vemurafenib (formerly PLX4032) and metformin were tested against a panel of human melanoma cell lines with defined BRAF and NRAS mutations for effects on viability, cell cycle and apoptosis. Signaling molecules in the MAPK, PI3K-AKT and LKB1-AMPK pathways were studied by Western blot.ResultsSingle agent metformin inhibited proliferation in 12 out of 19 cell lines irrespective of the BRAF mutation status, but in one NRASQ61K mutant cell line it powerfully stimulated cell growth. Synergistic anti-proliferative effects of the combination of metformin with vemurafenib were observed in 6 out of 11 BRAFV600E mutants, including highly synergistic effects in two BRAFV600E mutant melanoma cell lines. Antagonistic effects were noted in some cell lines, in particular in BRAFV600E mutant cell lines resistant to single agent vemurafenib. Seven out of 8 BRAF wild type cell lines showed marginally synergistic anti-proliferative effects with the combination, and one cell line had highly antagonistic effects with the combination. The differential effects were not dependent on the sensitivity to each drug alone, effects on cell cycle or signaling pathways.ConclusionsThe combination of vemurafenib and metformin tended to have stronger anti-proliferative effects on BRAFV600E mutant cell lines. However, determinants of vemurafenib and metformin synergism or antagonism need to be understood with greater detail before any potential clinical utility of this combination. | Flaherty KT, Yasothan U, Kirkpatrick P (2011) Vemurafenib. Nature reviews. Drug discovery 10, 811-812 [PubMed:22037033] [show Abstract] In August 2011 vemurafenib (Zelboraf; Daiichi Sankyo/Roche), an inhibitor of BRAF kinase, was approved by the US Food and Drug Administration (FDA) for the treatment of patients with unresectable or metastatic melanoma with the BRAF(V600E) mutation. | Heakal Y, Kester M, Savage S (2011) Vemurafenib (PLX4032): an orally available inhibitor of mutated BRAF for the treatment of metastatic melanoma. The Annals of pharmacotherapy 45, 1399-1405 [PubMed:22028422] [show Abstract]
ObjectiveTo summarize the preclinical and clinical data on vemurafenib, approved by the Food and Drug Administration (FDA) on August 17, 2011, and discuss the drug's clinical advantages and limitations.Data sourcesAn English-language literature search of MEDLINE/PubMed (1966-August 2011), using the terms PLX4032, RG7204, RO5185426, vemurafenib, and metastatic melanoma, was conducted. In addition, information and data were obtained from meeting abstracts, clinical trial registries, and news releases from the FDA.Study selection and data extractionAll relevant published articles and abstracts on vemurafenib were included. Clinical trial registries and meeting abstracts were used to obtain information regarding ongoing trials. All peer-reviewed articles containing information regarding the clinical safety and efficacy of vemurafenib were evaluated for inclusion.Data synthesisBefore the recent approval (March 2011) of ipilimumab, there was no first-line standard-of-care therapy, with proven overall survival benefit, for the treatment of malignant metastatic melanoma. Unlike ipilimumab, which acts through immune-modulation, vemurafenib is a novel, molecularly targeted therapeutic with preferential efficacy toward a specific mutated oncogenic BRAF-signaling mediator. In recently published results of a Phase 3 clinical trial comparing dacarbazine with vemurafenib, vemurafenib prolonged progression-free and overall survival, with confirmed objective response rate of 48% (95% CI 42 to 55) versus 5% (95% CI 3 to 9) for patients who received dacarbazine (p < 0.001).ConclusionsVemurafenib offers a novel, first-line, personalized therapy for patients who have mutated BRAF. Clinical trials of vemurafenib in combination with ipilimumab or other targeted or cytotoxic chemotherapeutic agents may provide more effective regimens with long-term clinical benefit. | Chapman PB, Hauschild A, Robert C, Haanen JB, Ascierto P, Larkin J, Dummer R, Garbe C, Testori A, Maio M, Hogg D, Lorigan P, Lebbe C, Jouary T, Schadendorf D, Ribas A, O'Day SJ, Sosman JA, Kirkwood JM, Eggermont AM, Dreno B, Nolop K, Li J, Nelson B, Hou J, Lee RJ, Flaherty KT, McArthur GA, BRIM-3 Study Group (2011) Improved survival with vemurafenib in melanoma with BRAF V600E mutation. The New England journal of medicine 364, 2507-2516 [PubMed:21639808] [show Abstract]
BackgroundPhase 1 and 2 clinical trials of the BRAF kinase inhibitor vemurafenib (PLX4032) have shown response rates of more than 50% in patients with metastatic melanoma with the BRAF V600E mutation.MethodsWe conducted a phase 3 randomized clinical trial comparing vemurafenib with dacarbazine in 675 patients with previously untreated, metastatic melanoma with the BRAF V600E mutation. Patients were randomly assigned to receive either vemurafenib (960 mg orally twice daily) or dacarbazine (1000 mg per square meter of body-surface area intravenously every 3 weeks). Coprimary end points were rates of overall and progression-free survival. Secondary end points included the response rate, response duration, and safety. A final analysis was planned after 196 deaths and an interim analysis after 98 deaths.ResultsAt 6 months, overall survival was 84% (95% confidence interval [CI], 78 to 89) in the vemurafenib group and 64% (95% CI, 56 to 73) in the dacarbazine group. In the interim analysis for overall survival and final analysis for progression-free survival, vemurafenib was associated with a relative reduction of 63% in the risk of death and of 74% in the risk of either death or disease progression, as compared with dacarbazine (P<0.001 for both comparisons). After review of the interim analysis by an independent data and safety monitoring board, crossover from dacarbazine to vemurafenib was recommended. Response rates were 48% for vemurafenib and 5% for dacarbazine. Common adverse events associated with vemurafenib were arthralgia, rash, fatigue, alopecia, keratoacanthoma or squamous-cell carcinoma, photosensitivity, nausea, and diarrhea; 38% of patients required dose modification because of toxic effects.ConclusionsVemurafenib produced improved rates of overall and progression-free survival in patients with previously untreated melanoma with the BRAF V600E mutation. (Funded by Hoffmann-La Roche; BRIM-3 ClinicalTrials.gov number, NCT01006980.). |
|