C. albicans HSP90/C7_02030W Summary

Last curated 2024-03-04
See the Literature Guide for most recent publications.

Help

Summary
Locus History Literature Gene Ontology Phenotype Homologs Protein
       
HSP90 BASIC INFORMATION [ View References ]
Standard Name HSP901
Systematic Name, Reference Strain C7_02030W_A (C. albicans SC5314)
Assembly 19/21 Identifier orf19.6515
Alias orf19.13868, orf6.76452, IPF20556.12, IPF4596.22, Contig4-3089_00263, CA49592, CaJ7.02344, CaO19.65155, CaO19.138685, CaJ7_02345, CaO19_65155, orf19.6515, C7_02030W_B, C7_02030W
Feature Type ORF, Verified
Description Essential chaperone, regulates several signal transduction pathways and temperature-induced morphogenesis; activated by heat shock, stress; localizes to surface of hyphae, not yeast cells; mediates echinocandin and biofilm azole resistance (6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17)
Literature
Name Description Heat Shock Protein
Allele Name C7_02030W_B
Allelic Variation No allelic variation in feature
CUG Codons C7_02030W_A: 0
C7_02030W_B: 0
Systematic Names Used in Other Strains CAWG_05553 (C. albicans WO-1)
Orthologous genes in Candida species C. dubliniensis CD36 Ortholog(s) : Cd36_71850
C. auris B8441 Ortholog(s) : B9J08_004918/HSP90
C. parapsilosis CDC317 Ortholog(s) : CPAR2_703150
C. glabrata CBS138 Ortholog(s) : CAGL0L00495g/HSC82
View ortholog cluster : 19 genes among 19 Candida-related species/strains
Ortholog(s) in non-CGD species A. nidulans (hsp90) ; N. crassa (hsp80) ; S. pombe (SPAC926.04c) ; S. cerevisiae (HSC82)
JBrowse JBrowse
GO Annotations View all HSP90 GO evidence and references

  Molecular Function
 
    Manually curated * unfolded protein binding (ISS)
    Computational * ATP binding (IEA with S. pombe: SPAC926.04c)
* ATP-dependent protein folding chaperone (IEA with EBI: IPR001404)
* ATPase (IEA with S. cerevisiae: HSC82, S. pombe: SPAC926.04c)
* unfolded protein binding (IEA with S. cerevisiae: HSC82, S. pombe: SPAC926.04c)

  Biological Process
 
    Manually curated * biological process involved in interspecies interaction between organisms (IMP)
* cellular response to drug (IMP)
* cellular response to heat (IEP, ISS, IMP)
* filamentous growth (IGI with C. albicans: RAS1, IMP)
* filamentous growth of a population of unicellular organisms (IMP)
* intracellular steroid hormone receptor signaling pathway (IGI with S. cerevisiae: HSP82, S. cerevisiae: HSC82)
* negative regulation of filamentous growth of a population of unicellular organisms (IMP)
* protein folding (IGI with S. cerevisiae: HSP82, S. cerevisiae: HSC82)
* regulation of apoptotic process (IMP)
    Computational * box C/D snoRNP assembly (IEA with S. cerevisiae: HSC82)
* cellular response to heat (IEA with S. cerevisiae: HSC82)
* cytoplasmic translation (RCA)
* negative regulation of filamentous growth (IEA with C. auris: HSP90)
* proteasome assembly (IEA with S. cerevisiae: HSC82)
* proteasome-mediated ubiquitin-dependent protein catabolic process (RCA)
* protein folding (IEA with S. cerevisiae: HSC82, S. pombe: SPAC926.04c)
* regulatory ncRNA-mediated heterochromatin formation (IEA with S. pombe: SPAC926.04c)
* telomere maintenance (IEA with S. cerevisiae: HSC82)

  Cellular Component
 
    Manually curated * cell surface (IDA)
* cytoplasm (IDA)
* extracellular vesicle (IDA)
* fungal-type cell wall (IDA)
* hyphal cell wall (IDA)
* membrane (IDA)
    High-throughput * plasma membrane (IDA)
    Computational * protein aggregate center (IEA with S. pombe: SPAC926.04c)
Mutant Phenotype View all HSP90 Phenotype details and references
Classical genetics
  heterozygous null * glucan accumulation: decreased
* germ tube formation: normal
* viable
* virulence: normal

  homozygous null * inviable

  repressible * apoptosis: decreased
* biofilm formation: abnormal
* cellular morphology: abnormal
* filamentous growth: abnormal
* filamentous growth: increased
* germ tube formation: increased
* Cna1p accumulation: decreased
* Mkc1p accumulation: decreased
* Mkc1p modification: decreased
* resistance to fluconazole: decreased
* resistance to micafungin: decreased
* virulence: decreased

Large-scale survey
  heterozygous null * resistance to virgineone: decreased
* viable

  null * inviable

Sequence Information Collapse Ca22chr7A_C_albicans_SC5314:439525 to 441648 | JBrowse
  Last Update Coordinates: 2016-01-21 | Sequence: 2014-06-24

  Subfeature Details
Relative
Coordinates
Chromosomal
Coordinates
Most Recent Update
CoordinatesSequence
CDS1to2124439,525to441,6482016-01-212014-06-24

Retrieve Sequences
Sequence Analysis Tools
Maps & Displays
Allele Location
  Allele C7_02030W_B
Collapse
Ca22chr7B_C_albicans_SC5314:439534 to 441657 | JBrowse
  Last Update Coordinates: 2016-01-21 | Sequence: 2014-06-24

  Subfeature Details
Relative
Coordinates
Chromosomal
Coordinates
Most Recent Update
CoordinatesSequence
CDS1to2124439,534to441,6572016-01-212014-06-24

External Links BioGRID | CGOB | Entrez Gene (1, 2, 3) | Fungal Orthologs | FungiDB | GenBank (1, 2, 3, 4, 5, 6, 7, 8) | Non-periodic Expression | Pedant | PhylomeDB | SwissProt | TrEMBL
Primary CGDID CAL0000201062
ADDITIONAL INFORMATION for HSP90
Gene/Sequence Resources
LOCUS SUMMARY NOTES for HSP90 (Last Updated: 2011-04-28)
  • an essential molecular chaperone of the Hsp90p family; it has been shown to be essential in S. cerevisiae and every other eukaryote in which it has been tested (7)
  • orthologous to S. cerevisiae, HSP82 (7)
  • by cell surface protein extraction, C. albicans Hsp90p is shown to be localized on the cell surface as well as in the cytoplasm; the cytoplasmic form is induced by heat shock and by 17-beta-estradiol (9, 8)
  • heat shock inducible, its levels changed during batch growth with maximum levels reached during the mid-exponential growth phase (7)
  • specifically induced as part of a core stress response by cadmium stress and and to a temperature upshift as determined by microarray analysis (13)
  • induced by amphotericin B and by caspofungin exposure as determined by MALDI-TOF mass spectroscopy; downregulated by ketoconazole exposure (18)
  • compromising Hsp90p function pharmacologically (with geldanamycin or radicicol) or genetically (with repressible promoter strains) induces a transition from yeast to filamentous growth in the absence of external cues; elevated temperature relieves Hsp90p-mediated repression of the filamentous growth signaling program (14)
  • through a combination of pharamcological inhibition studies and genetic analysis, Hsp90p has been shown to repress Ras1-PKA signaling; modest Hsp90p compromise enhances the phenotypic effects of activated Ras1p signaling whereas deletion of positive regulators of the Ras1p-PKA cascade blocks a morphogenetic response to Hsp90p inhibition (14)
  • Hsp90p regulates echinocandin resistance in C. albicans via calcineurin; pharmacological or genetic impairment of Hsp90p function reduces tolerance of C. albicans laboratory strains and resistance of clinical isolates to the echinocandins and creates a fungicidal combination (16)

  • reciprocal co-immunoprecipitation experiments show a physical interaction between Hsp90p and calcineurin; compromising calcineurin function phenocopies the compromise of Hsp90p function; Hsp90p inhibition blocks calcineurin activation and calcineurin levels are depleted upon genetic reduction of Hsp90p (16)
  • in vitro, HSP90 is upregulated with 40 and 200 μM farnesol along with other proteins involved in protein folding and protection against environmental and oxidative stress (15)
  • exposure of C. albicans biofilms to farnesol results in the down-regulation of HSP90 and other heat shock proteins; the production of heat shock proteins may contribute to the protection of cells from damage and repair of cell damage following stress, which can occur in biofilms (19)
  • antigenic in humans; the epitope LKVIRK, identified by hybrid-phage display, on the 47kDa heat shock protein, Hsp90p, corresponding to residues 386-391, is recognized by patients recovering from invasive candidiasis; the LKVIRK epitope is potentially useful as a vaccine as immunization protects mice with an intervenous challenge of C. albicans, confirmed by fewer fungal cells in the kidneys and a longer lifespan of the vaccinated mice compared to control groups (11)
  • depletion of C. albicans Hsp90p attenuates virulence in a mouse model of systemic disease (14)
REFERENCES CITED ON THIS PAGE [View Complete Literature Guide for HSP90]
1)Crampin AC and Matthews RC (1993) Application of the polymerase chain reaction to the diagnosis of candidosis by amplification of an HSP 90 gene fragment. J Med Microbiol 39(3):233-8
CGD Papers Entry  Pubmed Entry  
2)CandidaDB
CGD Papers Entry  
3)Berman J (2005) Mapping of ORFs in Assembly 4 to those in Assembly 19.
CGD Papers Entry  
4)Chibana H, et al. (2005) Sequence finishing and gene mapping for Candida albicans chromosome 7 and syntenic analysis against the Saccharomyces cerevisiae genome. Genetics 170(4):1525-37
CGD Papers Entry  Pubmed Entry  Reference LINKOUT  
5)Maglott D, et al. (2007) Entrez Gene: gene-centered information at NCBI. Nucleic Acids Res 35(Database issue):D26-31
CGD Papers Entry  Pubmed Entry  Reference LINKOUT  Reference LINKOUT  Reference LINKOUT  Reference LINKOUT  Reference LINKOUT  
6)Ni J, et al. (2004) Candida albicans Cdc37 interacts with the Crk1 kinase and is required for Crk1 production. FEBS Lett 561(1-3):223-30
CGD Papers Entry  Pubmed Entry  Reference LINKOUT  
7)Swoboda RK, et al. (1995) Structure and regulation of the HSP90 gene from the pathogenic fungus Candida albicans. Infect Immun 63(11):4506-14
CGD Papers Entry  Pubmed Entry  Reference LINKOUT  
8)Burt ET, et al. (2003) Isolation and partial characterization of Hsp90 from Candida albicans. Ann Clin Lab Sci 33(1):86-93
CGD Papers Entry  Pubmed Entry  
9)Urban C, et al. (2003) Identification of cell surface determinants in Candida albicans reveals Tsa1p, a protein differentially localized in the cell. FEBS Lett 544(1-3):228-35
CGD Papers Entry  Pubmed Entry  Reference LINKOUT  
10)Pitarch A, et al. (2004) Proteomics-based identification of novel Candida albicans antigens for diagnosis of systemic candidiasis in patients with underlying hematological malignancies. Proteomics 4(10):3084-106
CGD Papers Entry  Pubmed Entry  Reference LINKOUT  
11)Yang Q, et al. (2005) Prophylactic vaccination with phage-displayed epitope of C. albicans elicits protective immune responses against systemic candidiasis in C57BL/6 mice. Vaccine 23(31):4088-96
CGD Papers Entry  Pubmed Entry  Reference LINKOUT  
12)Cowen LE and Lindquist S (2005) Hsp90 potentiates the rapid evolution of new traits: drug resistance in diverse fungi. Science 309(5744):2185-9
CGD Papers Entry  Pubmed Entry  Reference LINKOUT  
13)Enjalbert B, et al. (2006) Role of the Hog1 stress-activated protein kinase in the global transcriptional response to stress in the fungal pathogen Candida albicans. Mol Biol Cell 17(2):1018-32
CGD Papers Entry  Pubmed Entry  Reference LINKOUT  Web Supplement  Data  
14)Shapiro RS, et al. (2009) Hsp90 orchestrates temperature-dependent Candida albicans morphogenesis via Ras1-PKA signaling. Curr Biol 19(8):621-9
CGD Papers Entry  Pubmed Entry  CGD Curated Comments & Errata
15)Shirtliff ME, et al. (2009) Farnesol-induced apoptosis in Candida albicans. Antimicrob Agents Chemother 53(6):2392-401
CGD Papers Entry  Pubmed Entry  Reference LINKOUT  
16)Singh SD, et al. (2009) Hsp90 governs echinocandin resistance in the pathogenic yeast Candida albicans via calcineurin. PLoS Pathog 5(7):e1000532
CGD Papers Entry  Pubmed Entry  Reference LINKOUT  Reference LINKOUT  Reference LINKOUT  
17)Robbins N, et al. (2011) Hsp90 governs dispersion and drug resistance of fungal biofilms. PLoS Pathog 7(9):e1002257
CGD Papers Entry  Pubmed Entry  Reference LINKOUT  Reference LINKOUT  Reference LINKOUT  
18)Hoehamer CF, et al. (2010) Changes in the proteome of Candida albicans in response to azole, polyene, and echinocandin antifungal agents. Antimicrob Agents Chemother 54(5):1655-64
CGD Papers Entry  Pubmed Entry  Reference LINKOUT  
19)Cao YY, et al. (2005) cDNA microarray analysis of differential gene expression in Candida albicans biofilm exposed to farnesol. Antimicrob Agents Chemother 49(2):584-9
CGD Papers Entry  Pubmed Entry  Reference LINKOUT  Web Supplement  Data  


Return to CGD
Send a Message to the CGD Curators